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Prahlad T. Ram 
Functional proteomic analysis of signaling networks and response to targeted therapy 
DOD-IDEA BC044268 
 
Final Report 
 
Introduction 
The purpose of the research done has been to determine the regulation of the EGFR network and identify how 
manipulations of the network alter signal flow to bypass targeted inhibitions. The scope of the project is to 
understand the network and determine which molecules have to be targeted to inhibit tumor cell proliferation.  
 
Body 
The aims of the proposal were as follows. 
1. Determine the dynamics of the EGFR/MAPK/Stat3/PI3K signaling network in response to EGF 
and the drugs Iressa and Herceptin in breast cancer cells. 
2. Determine how signals are integrated and routed within this EGF response network and identify 
important nodes that regulate the network. 
3. Determine what combinations of targeted inhibitors effectively reduce proliferation for each of 
the breast cancer cell lines. 
 
Since the final report guidelines state that “Journal publications can be substituted for detailed descriptions of 
specific aspects of the research” we have included 5 of our papers that describe results in detail. 
 
Aim 1 of the application was the development of quantitative reverse phase protein micro arrays to determine 
the changes in the signaling network. We have accomplished this task.  
 
Figure 1 and 2  below shows development of the quantitative array to measure changes in phospho-protien 

 
Figure 1. Western blot of MCF10A cells. MCF10A 
breast cells were treated with Lapatinib, Dasatnib or 
DMSO as control followed by stimulation with EGF. 1. 
Control, 2. EGF, 3. Lapatinib, 4. Lapatinib + EGF, 5. 
Dasatnib, 6. Dasatnib + EGF. Cell lysates were 
aliquoted and used on the RPPA and for Western blot 
analysis.  

 
Figure 2 RPPA slides and statistical data analysis 
of each slide. An aliquot of the MCF10A lysate was 
spotted on RPPA slides and each slide was probed 
with the antibody listed. The same antibodies used for 
the Western blot in Figure 3 was used for the RPPA. 
The graphs show the supercurve analysis data fit, the 
R2 vlalues are between 0.82 and 0.96.. 
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Figure 3. Quantification of changes in activity of signaling molecules using RPPA. Purified protein, EGF 
treated and non-stimulated MDA–468 cell lysates and phospho-AKT peptide were serial diluted and spotted on a 
RPPA slide. The slide was probed using phospho-S473 AKT antibody. The slide is shown along with the range of 
concentrations of the samples spotted on the array. 

levels in cells upon treatment with EGF.  
 

.  
 
Figure 3 shows the quantitative aspect of the 
RPPA whereby we are bale to detect pico 
gram amounts of protein. 
 
Figure 4. shows the RPPA data from the 
same lysates used in Fig 1 and 2. As can be 
see n in the figure 4 we are able to 
simultaneously measure protein levels of a 
large number of conditions. 
 
The data in figure 5 shows the quantification 
of changes in the dynamic activity of 
signaling molecules upon stimulation with 
EGF.  We have extensively investigated the 
dynamic changes in signaling of several 
members of the signaling network, including 
MAPK, AKT, Stat3, Src, S6K, p38, NFkB, 
and JNK (please see attached publications).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
Figure 4 RPPA from MCF10A breast cells. MCF10A cells were 
incubated with 2 different pharmacological inhibitors for 4 hours or 
with DMSO as control. Cells were then stimulated with EGF or 
vehicle for 20 minutes. The cell lysates were spotted on the RPPA 
and probed using 30 different phospho and total antibodies. The 
data is mean centered for each antibody: black - mean intensity 
value, red - increased intensity of signal and green - decreased 
intensity of signal. Lap- Lapatinib, Das- Dasatinib, C-control, A&B 
1,2,3 – experiment replicate numbers (n=6).   
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Aim2 of the grant was to integrate the biological 
experimental data into a computational model to 
determine dynamic properties of the nertwork. 
 
 
Figure 6 shows the computational analysis of 
information flow in the EGFR network from 
experimental data measured by RPPA. Please see 
attached publications Ruths et al 2008 and 
Iadevaia et al 2010) 
 
 
 
 
 
 
 

 
Figure 6 PathwayOracle model of Lapatinib signaling in 
MCF10A cells. Red indicates increase in signal compared to 
control non treated cells, and green indicates a decrease in 
signal, black are no changes or non-measured nodes.  
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Figure 5 Simultaneous measurements of activity states of molecules within the EGF signaling network. Human 
breast cancer cells (MDA231 and BT549) were stimulated with 20 ng/ml EGF for the times indicated. The cells were lysed, 
quantified, and equal concentrations of lysates and their serial dilutions spotted on the array. The slides were then probed 
with phospho-antibodies to y705Stat3, y416Src, and s473AKT as well as antibodies to total Stat3, Src, and AKT. The slides 
were scanned and spot intensity quantified. The change in activity was measured for only those concentrations that were 
within the linear range. The activity was normalized to total protein levels and the data shown on the graph above. 
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We perturbed individual nodes in the network 
to determine how signaling is altered through 
the network. Figure 7 shows the RPPA data 
from one such experiment where three 
different drugs were used in two cell lines 
and the cells were stimulated with EGF. 
Similar experiments were done for the entire 
panel of cell lines. 
 
Analysis of the data revealed several 
feedback loops that became activated when 
one node was inhibited. One such loop was 
the increase in pAKT when MEK whas 
inhibited. This is seen in the RPPA as well as 
by western blot analysis (Figure 8&9). 
Details of these can be found in the attached 
publications. 
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Figure 9. U0126 (MEK inhibitor) increase AKT 
phosphorylation. MDA231 cells were treated 
with U0126 and stimulated with EGF. Western blot 
analysis shows an increase in AKT 
phosphorylation. MAPK shows inhibition in 
response to the MEK inhibitor.
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Figure 8. PD98059 increases AKT (Western blot 
anlaysis). Aliquots of the lysates were probed for 
phospho AKT by Western blot (top panel). 
Quantification of the data shows about a 1.8 fold 
increase in phospho AKT.  

 
Figure 7. RPPA analysis of BT549 and MDA231 cells. The two 
cell lines were treated with MEK (PD), EGFR (IR), AKT (Pf) 
inhibitors, or control (C) and stimulated with EGF for 30 minutes 
(EGF), or non-EGF stimulated, a&b are two independent samples. 
Black is mean intensity, red increase, and green decrease in 
intensity.  
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Aim 3 of the grant was to use data and the model to determine optimal combinations for each cell line. 
 
Based on the experimental data (Figure 7-9) and our developed model (Figure 10) we predicted different 
combinations of targets (Figure 11). We experimentally tested (Figures 12 & 13) the predictions and showed 

that infact combination targeting can overcome 
deficiencies of single targeted agents. These and 
additional data are seen in the publications Ruths et 
al 2008 and Iadevaia et al 2010.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10 Subnetwork showing the connectivity of the 
EGFR/MAPK/AKT subnetwork. The colors indicate 
changes in phosphorylation in response to EGF compared 
to non stimulated control cells. Red is increase and green 
is decrease in phosphorylation. 
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Figure 11. PathwayOracle modeling of different 
inhibitors in combination. Modeling of combinations of 
targeted inhibition on AKT was simulated in 
PathwayOracle. The model predicts that a combination 
of MEK and mTOR inhibition will increase AKT, while 
combinations of AKT, TSC2, and EGFR inhibitions with 
MEK will not. These predictions will be experimentally 
tested. 
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Figure 12. Lapatinib inhibits the 
MEK increase in AKT 
phosphorylation. MDA231 cells were 
treated with inhibitors to MEK, EGFR 
and in combination. The combination 
inhibits the AKT increase in 
phosphorylation. 
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Figure 13. siRNA knockdown of TSC2 and 
AKT response to EGF and MEK inhibition. 
TSC2 was knocked down in MDA231 cells with 
TSC2 siRNA, control cells were transfected with 
non specific siRNA. The cells were treated with 
MEK inhibitor or vehicle for 2 h and stimulated 
with EGF. The lysates were probed for phospho 
AKT, total TSC2, and actin. Knockdown of TSC2 
blocks the MEK inhibition induced increase in 
AKT phosphorylation. 
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Key research accomplishments 
Aim 1. We developed a quantitative RPPA to measure dynamics of signaling network in response to EGF 
Aim2. We  developed a  computational model and integrated the experimental data. 
Aim 3. We predicted and tested combinations of targets based on underlying experimental data. 
 
 
Reportable outcomes 
The grant has help support research and personnel that has resulted in 5 publications (see references). The data 
from the grant has also allowed me to obtain a NIH-R01 grant (R01 CA125109). The results from the work were 
also given during a talk and poster presentation at the 2008 ERA of HOPE meeting in Baltimore, MD. 
 
 
Conclusions 
We have successfully completed the objectives of the grant. We have learnt that targeted manipulation of the 
signaling network can lead to unforeseen changes elsewhere in the network, therefore we need to understand 
what these other changes are and determine optimal combinations to kill breast cancer cells. 
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Graph-theoretic Hypothesis Generation in Biological
Signaling Networks

Derek A. Ruths1 Luay Nakhleh1 M. Sriram Iyengar2

Shrikanth A. G. Reddy3 Prahlad T. Ram3

1 Department of Computer Science, Rice University, Houston, TX 77005, USA
{druths,nakhleh}@rice.edu

2 UT School of Health Information Sciences, Houston, TX 77030, USA
msriram@uth.tmc.edu

3 UT M.D. Anderson Cancer Center, Houston, TX 77030, USA
{pram,sareddy}@mdanderson.org

Abstract. Biological signaling networks comprise the chemical processes by
which cells detect and respond to changes in their environment. Such networks
have been implicated in the regulation of important cellular activities including
cellular reproduction, mobility, and death. Though technological and scientific
advances have facilitated the rapid accumulation of information about signaling
networks, utilizing these massive information resources has become infeasible
except through computational methods and computer-based tools. To date, visu-
alization and simulation tools have received significant emphasis. In this paper,
we present a graph-theoretic formalization of biological signaling network mod-
els that are in wide but informal use, and formulate two problems on the graph: the
Constrained DownstreamandMinimum KnockoutProblems. Solutions to these
problems yield qualitative tools for generating hypotheses about the networks,
which can then be experimentally tested in a laboratory setting. Using estab-
lished graph algorithms, we provide a solution to the Constrained Downstream
Problem. We also show that the Minimum Knockout Problem is NP-Hard, pro-
pose a heuristic, and assess its performance. In tests on the Epidermal Growth
Factor Receptor (EGFR) network, we find that our heuristic reports the correct
solution to the problem in seconds. Source code for the implementations of both
solutions is available from the authors upon request.



Hypothesis Generation in Biological Networks 1

1 Introduction

In this paper, we use the termbiological networksto refer to cell signaling networks,
chains of reactions involved in triggering, propagating, and processing signals within
the cell. These networks regulate many cellular activities that are critical to the health of
the cell and the larger systems to which it may belong. Altered biological networks have
been implicated as the cause of many devastating diseases including cancer [15], heart
disease [11], congenital abnormalities [9], metabolic disorders [15], and immunological
abnormalities [15].

Significant research efforts to identify and map biological networks, aided by new
technologies and scientific methods, have amassed vast databases of molecules and pu-
tative interactions among them. Given the immense scale of networks now in common
use, computational techniques to filter, search, and reason about them have become
indispensable.

Existing research on computational tools in this area has focused on two forms of
analysis: visualization of the networks [17, 13, 22, 10], and detailed simulations of
small subnetworks based on initial conditions, reaction rates, and other molecule and
reaction-specific parameters [19, 12, 24, 21]. Because of the difficulty of determin-
ing these parameters, higher-level models are used whenever possible. Recent efforts
have also developed hypothesis generation techniques that use model checking and for-
mal verification in order to qualitatively reason about networks [6, 5, 26, 8, 7, 27].
Hypothesis testing tools establish the set of most-likely outcomes of an experiment,
providing insights into experimental design, thereby reducing the investment of time
and labor-intensive laboratory work. Existing hypothesis generation tools require state-
ments about the properties of individual reactions in networks, details that are often
unavailable for many networks. In this paper, we present a framework for computa-
tional hypothesis testing that only depends on the simplest property of a reaction - its
reactants and products. Our framework combines currently-used graph-based network
representations with graph algorithms. We also formalize two biologically significant
problems useful for hypothesis testing.

TheConstrained Downstream Problemseeks the set of reactions in a biological net-
work that leads from one set of molecules to another, such that the set is constrained to
include reactions from a given set and exclude reactions from another given set. This is a
useful tool in the design of drugs to modify or inhibit certain biological functions while
preserving others. At the signaling network level this would help to identify molecules
or sets of molecules that have to be targeted to inhibit function of a sub-network while
preserving signal flow to a different sub-network. A biological endpoint for this type of
problem would be if one wanted to identify a molecule (or a set of molecules) to inhibit
proliferation while at the same time preserving metabolic or secretary functions. We
provide a polynomial-time algorithm for solving this problem.

The Minimum Knockout Problemseeks a minimum-size set of molecules whose
removal (orknocking out) from the biological network makes the production of a set of
molecules impossible given an initial set of molecules. The minimum knockout problem
is very important in the identification of molecular targets for therapies, especially in
cancer. Traditional chemotherapeutics function by killing rapidly dividing cells, the end
result being both cancer cells as well as normal cells are killed, hence the hair loss
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and gastro-intestinal side effects of these drugs. In the past few years there has been
a great effort in developing drugs that specifically target signaling molecules that are
aberrantly functioning in cancer cells. The clinical trials and data from these drugs
show that they are limited in their ability, and function best in combination with other
targeted drugs. Therefore, the biological problem here is to identify the optimal and
minimal sets of molecules that have to be targeted to block network function. This will
allow the development of therapeutics that can efficiently kill cancer cells while still
preserving normal cells.

The rest of the paper is organized as follows. In Section 2 we introduce a graph
formalization of biological networks. In Section 3 we formulate the Constrained Down-
stream problem, and present a polynomial-time solution of it. In Section 4 we formu-
late the Minimum Knockout problem, prove its NP-hardness, and devise a randomized
heuristic for solving it. In Section 5 we analyze the accuracy and performance of the
proposed heuristic for the Minimum Knockout Problem on a large biological network.
In Section 6 we conclude and outline future research directions.

2 Biological Networks
Standard models of biological networks encompass various molecules and interactions
among them that occur on and within the cell membrane. An example of such a model is
given in Fig. 1. These models consist of instances of two fundamental components: (1)
amolecule, either inorganic (such as oxygen,O2), or organic such as proteins, segments
of DNA, RNA, or evencomplexesconsisting of one or more molecules attached to one
another; and (2) aninteraction, which is a change that occurs to one or more molecules.
A change to a molecule will either change a property of the molecule (activity and/or
localization), bind one or more molecules together, or break one or more molecules
apart.

A salient feature of biological networks is the common occurrence offeedback loops
(Fig. 1) in which a moleculea, through a series of interactions, gives rise to another
moleculeb that directly changes properties of moleculea through interactions. Aneg-
ative feedback loopis a chain of interactions which decreases the activity of molecule
a in the network; apositive feedback loopincreases the activity of moleculea in the
network.

2.1 Existing Representations and Models of Biological Networks

Standard models of biological networks have served as the basis for a number of com-
putational models allowing simulating and reasoning about cell processes. We briefly
review some of these models in this section.

The Systems Biology Markup Language (SBML) is an XML schema for represent-
ing biological networks in addition to regulatory and metabolic networks [1]. The model
uses chemical nomenclature: molecules are calledspeciesand interactions are calledre-
actions. In the model, a reaction has reactant, product, and modifier species. Reactants
and modifiers are both inputs to the reaction, differing only in that a modifier affects
the reaction without undergoing any changes. The SBML file format and underlying
network structure is well-accepted and supported by a large number of tools [1].

Petri Nets are considered hybrid models of networks because they model both the
global topology of the network as well as some of the reaction-specific parameters that



Hypothesis Generation in Biological Networks 3

determine the quantitative behavior of the system. They have been used with varying
success to simulate biological networks [28]. In translating the biological network into
a Petri Net, each molecule and each interaction is given its own node. Each molecule is
initialized with some number of ‘tokens’ which are then iteratively reallocated by the
interactions to which they are connected. For a more detailed discussion of PetriNets,
see [23]; for an example application see [28].

Differential and algebraic models attempt to simulate the quantitative characteristics
of a network using mathematical formulae as well as constants and parameters that have
been determined for each reaction in the network [3, 4, 14, 25, 19, 12, 24, 21]. While
undisputedly the most accurate of available techniques, these methods are not yet able
to simulate large networks efficiently and accurately.

Model checking and formal verification techniques use logical models of networks
to make qualitative assertions about their temporal properties (i.e., whether a certain
reaction will ever take place under certain conditions). These tools have received sig-
nificant attention due to their ability to support rapid qualitative hypothesis generation
without requiring significant information specific to the networks of interest [6, 5, 26, 8,
7, 27]. In contrast to differential, algebraic, and Petri Net models which require numer-
ical parameters, logical models require qualitative properties of individual reactions.
Further, the temporal logic mechanisms that these approaches use are limited in their
expressive power vis-à-vis general querying of biological networks.

The rapid pace of lab-based research on biological networks forces biologists to
deal with large numbers of reactions and molecules. The lack of much quantitative or
qualitative data for these reactions and molecules, coupled with the complexity of ques-
tions that biologists would ask about the networks, significantly hinder the applicability
and appropriateness of the techniques described above. There is a significant need for
tools that provide hypothesis generation capabilities in the absence of detailed network
information. For many known networks, the only experimentally confirmed detail is the
existence of reactions and the identities of their reactants and products. To the best of
our knowledge, hypothesis generation tools that operate on this information alone are
lacking. In this paper, we propose a model and approach for such tools and provide a
working implementation of two problems useful for hypothesis generation.

2.2 A Graph Formulation of Biological Networks
Numerous tools exist that visualize networks as graphs in which molecules and inter-
actions appear as interconnected nodes [17, 13, 22, 10]. Here, we formalize this graph
representation in order to provide a model on which hypothesis testing problems can
be posed, analyzed and solved. In this section we introduce this graph-theoretic model,
which we call thePathway Graph.

Definition 1. A pathway Graph is a directed graph,G = (V ◦, V 2, E), with two types
of nodes:molecule-nodes,V ◦, andinteraction-nodes,V 2, with the following proper-
ties:

1. V ◦ ∩ V 2 = ∅ and
2. For every(u, v) ∈ E, u andv are not of the same type.

Property (1) in Definition 1 implies that each node in the graph is either a molecule-node
or an interaction-node. Property (2) reflects that the fact that, biologically, a molecule
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Remove(G(V◦, V 2, E), v, Y ⊆ V ◦)

1. If v ∈ Y , Return.
2. LetX ⊆ V ◦ ∪ V 2 be the set of children ofv.
3. For everyx ∈ X

(a) Delete edge(v, x) from E
(b) If x ∈ V ◦ andindegree(x) = 0

i. Remove(G,x, Y ).
(c) If x ∈ V 2

i. Remove(G,x, Y ).
4. Deletev from V ◦ ∪ V 2.

(a) (b)

Fig. 1. (a) A diagram of a pathway graph model of a biological network. Circles represent
molecules and rectangles represent interactions. (b) TheRemoveprocedure for removing a node
from a pathway graph and propagating its effect.

cannot directly produce another molecule except through an interaction, nor can a reac-
tion lead to another reaction except through a molecule.

The effect of the “removal” of molecule-nodes from the pathway graph is of signif-
icant interest to researchers because it models the effect of drugs that inhibit sections of
the network. In particular, they are interested in the connectivity of the graph resulting
from the removal of those nodes. Biologically, the effect of removing a nodev in a
pathway graph usually propagates further to other nodes reachable fromv: interactions
involving the removed molecule can no longer occur, the products of those interactions
are no longer produced, and so on. ProcedureRemovein Fig. 1(b) is a formal descrip-
tion of the “propagation effect” of the removal of a nodev in a pathway graph. An
additional set of nodes,Y , is also specified to indicate the nodes at which to terminate
the propagation. The Remove procedure can be extended to apply to a set of nodes in a
straightforward manner:Remove(G(V◦, V 2, E), X, Y ). In this case,Removeis applied
successively to the nodes inX (this application yields the same result regardless of the
order of nodes).

3 The Constrained Downstream Problem
A critical piece of information necessary to predict the outcome of biological net-
work experiments is the set of molecules and interactions dependent on a given set
of molecules and/or interactions. In the pathway graph model, all elements in the graph
that are dependent on (downstream from) a set of molecules and interactions are reach-
able from that set.

Because of feedback loops in the network, often the set of downstream nodes will
contain a significant portion of the network, sometimes the entire network. In order
to reduce the number of downstream nodes returned, a biologist may choose to apply
certain constraints to the downstream node search. Constraints restrict the solution to
the set of nodes belonging to a path from nodes in setS to nodes in setT that includes
one or more nodes contained in setI and not containing any nodes in setX. These
nodes belong to a subset of all possible downstream nodes. This is a useful tool in
the design of drugs to modify or inhibit certain biological functions while preserving
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others. At the signaling network level this would help to identify molecules or sets of
molecules that have to be targeted to inhibit function of a sub-network while preserving
signal flow to a different sub-network.

Problem 1. THE CONSTRAINED DOWNSTREAM PROBLEM

Input: Pathway graphG = (V ◦, V 2, E) and four setsS, T ⊂ V ◦ andI,X ⊂
(V ◦ ∪ V 2).
Output: SubgraphG′ = (U◦, U2, E′) where
1. U◦ ⊆ V ◦, U2 ⊆ V 2, andE′ ⊆ E;
2. ∀u ∈ (U◦ ∪ U2), ∃[s ∈ S , t ∈ T ] such thats

G′

; u andu
G′

; t4;
3. (U◦ ∪ U2) ∩X = ∅;
4. every path from a node inS to a node inT passes through a node inI; and
5. G′ is the maximum subgraph that satisfies conditions 1–4.

G′ = FindDownstream(G= (V ◦, V 2, E), S,T ,I,X)

1. ∀t ∈ T , V isited[t] = 1; ∀t /∈ T , V isited[t] = 0;
2. ∀t ∈ T , OnPath[t] = 1; ∀t /∈ T , OnPath[t] = 0;
3. ∀v ∈ V ◦ ∪ V 2, AboveInclude[v] = 0;
4. G′ = (∅, ∅, ∅);
5. For everys ∈ S

CalcDownstream(G, s, I, ∅, G′).
6. ReturnG′;

CalcDownstream(G, v, I, P, G′)

1. If V isited[v] == 0
(a) V isited[v] = 1;
(b) LetC be the children ofv;
(c) For everyc ∈ C

CalcDownstream(G, c, (p1, . . . , pk, v));
2. Else

(a) If OnPath[v] == 0
Return;

(b) If AboveInclude[v] == 1
i. VG′ = VG′ ∪ P ;

ii. EG′ = EG′ ∪ {(p1, p2), . . . , (pk−1, pk)};
iii. ∀p ∈ P , AboveInclude[p] = 1;

(c) Else IfP ∩ I 6= ∅
i. VG′ = VG′ ∪ P ;

ii. EG′ = EG′ ∪ {(p1, p2), . . . , (pk−1, pk)};
iii. ∀p ∈ P , AboveInclude[p] = 1;

(d) Else, Return;

Fig. 2.The algorithm for the Constrained Downstream Problem.

The algorithm in Fig. 2 solves the Constrained Downstream Problem with time com-
plexity O(|V ◦ ∪ V 2|). Analysis of the running time as well as proof of the correctness
of the algorithms are omitted due to space constraints.

4 We writex
G
; y to denote that nodey is reachable from nodex in graphG.
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4 The Minimum Knockout Problem
A problem of significant interest to experimental biologists researching networks impli-
cated in disease is the minimum knockout problem. In this problem, for a given pathway
graph, a minimal set of nodes is sought such that the removal of these nodes discon-
nects a given set of (source) molecules,S ⊂ V ◦, from another given set of (target)
molecules,T ⊂ V ◦. The minimum knockout problem is very important in the identifi-
cation of molecular targets for therapies, especially in cancer. Traditional chemothera-
peutics function by killing rapidly dividing cells, the end result being both cancer cells
as well as normal cells are killed, hence the hair loss and gastro-intestinal side effects
of these drugs. Therefore, the biological problem here is to identify the optimal and
minimal sets of molecules that have to be targeted to block network function. Formally,
we define the problem (decision version) as follows.

Problem 2. THE M INIMUM KNOCKOUT PROBLEM (MKO)

Input: Pathway graphG = (V ◦, V 2, E), two sets of nodesS, T ⊂ V ◦, and a
positive integerQ.
Question: Does there exist a setU ⊆ ((V ◦ ∪ V 2)− (S ∪ T )) with |U | ≤ Q such
that Remove(G,U, S ∪ T ) yields graphG′ = (V ′◦, V ′2, E′) in which for every
s ∈ S andt ∈ T , s 6; t?

We first prove that MKO is NP-Hard, and then present an efficient and accurate ran-
domized heuristic for solving it. We prove the NP-hardess of the problem by a reduction
from the Minimum Set Cover Problem [16].

Problem 3. THE M INIMUM SET COVER PROBLEM (MSC)

Instance:CollectionC of subsets of a finite setB and a positive integerK ≤ |C|.
Question: DoesC contain a cover forB of sizeK or less, i.e., a subsetC ′ ⊆ C
with |C ′| ≤ K such that every element ofB belongs to at least one member ofC ′?

Theorem 1. MKO is NP-Hard.

Proof. Given an instance〈B = {b1, . . . , bm}, C = {C1, . . . , Cn},K〉 of MSC, we
construct an instance〈G, S, T,Q〉 of MKO as follows.

– Pathway graphG = (V ◦, V 2, E) where
• V ◦ = {si, ui : Ci ∈ C} ∪ {ti : bi ∈ B}.
• V 2 = {fi : Ci ∈ C} ∪ {gi : bi ∈ B}.
• E = {(si, fi) : 1 ≤ i ≤ n} ∪ {(fi, ui) : 1 ≤ i ≤ n} ∪ {(ui, gj) : bj ∈

Ci} ∪ {(gi, ti) : 1 ≤ i ≤ m}.
– S = {si ∈ V ◦}.
– T = {ti ∈ V ◦}.
– Q = K.

Fig. 3 gives an example of the construction. The graphG constructed by the reduction
satisfies the conditions of Definition 1, and hence it is a pathway graph. We now estab-
lish the validity of the reduction by showing that〈B,C,K〉 is a yes-instance of MSC if
and only if〈G, S, T,Q〉 is a yes-instance of MKO.



Hypothesis Generation in Biological Networks 7

s1 s2 s3 s4 s5

f1 f2 f3 f4 f5

u1 u2 u3 u4 u5

g1 g2 g3 g4 g5 g6

t1 t2 t3 t4 t5 t6

S

T

Fig. 3. The G, S, and T components of the MKO instance constructed by the reduction
in the proof of Theorem 1 for the MSC instance withB = {b1, b2, b3, b4, b5, b6}, C =
{{b1, b2}, {b3}, {b3, b4, b5}, {b5, b6}, {b6}}, andK = 3; Q = 3.

⇒ LetC ′ ⊆ C with |C ′| ≤ K be a cover forB. Then, by construction, every node in the
setY = {gi ∈ V 2} has an incoming edge from a node in the setX = {ui : Ci ∈ C ′}.
SinceY contains only interaction nodes, applying Remove (Fig. 1(b)) to all nodes in
X will disconnect all paths from nodes inS to nodes inT . Since|X| = |C ′| ≤ K and
Q = K, it follows that〈G, S, T,Q〉 is a yes-instance of MKO.
⇐ Assume there does not exist a cover of sizeK or less forB. Then, for every set
C ′ ⊆ C with |C ′| ≤ K, there is at least oneb′ ∈ B such thatb′ /∈ ∪c∈C′c. By construc-
tion of G, it follows that for any subset ofX = {ui : Ci ∈ C} of sizeQ or less, there
exists at least one node inY = {gi ∈ V 2} that is not a child of any node inX. Hence,
removing all nodes inX will not disconnect all paths fromS to T . Since every node
in T has a unique parent inY , it follows that there does not exist a set of nodes of size
Q or less that disconnects all paths from nodes inS to nodes inT . Hence,〈G, S, T,Q〉
is not a yes-instance of MKO. This finishes the proof, thus establishing that MKO is
NP-hard.

4.1 An Efficient and Accurate Randomized Heuristic for MKO
We now give an efficient and accurate heuristic for solving MKO; the heuristic is an it-
erative randomized search, with running timeO(nmk), wheren is the number of nodes
in the input pathway graph,m is the number of nodes in the constrained downstream
subgraph, andk is the number of iterations. In the worst-case scenario,m = n; how-
ever, in our experiments on a large pathway graph, we found thatk,m << n. The
heuristic is outlined in Fig. 4, and makes use of the following lemma.

Lemma 1. LetU be a minimum knockout set forS andT in graphGd = Downstream(G, S, T ),
whereGd = (V ◦

d , V 2
d , Ed). Then, there exists a minimum knockout setU ′ such that

1. |U ′| = |U | and
2. U ⊆ (V ◦

d ∪ (Children(S) ∩ V 2
d )).

The formal proof is omitted due to space constraints. Intuitively, this lemma states
that if nodev ∈ V 2 is an element of a solution to MKO, thenv can be replaced by
somev′ ∈ V ◦ where(v′, v) is an edge in the graph. The validity of this lemma follows
from the definition of theRemoveprocedure (Fig. 1). The onlyV 2 nodes that cannot
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MinKnockout(G = (V ◦, V 2, E), S,T ,m)

1. U = FindDownstream(G, S, T, ∅, ∅)
2. U◦ = U ∩ V ◦

3. U2 = U ∩ V 2

4. C = {u ∈ U : u ∈ U◦ ∨ u ∈ (Children(S) ∩ U2)}
5. Fori = 1 to m

(a) G′ = G
(b) Si = ∅
(c) WhileS

G′
; T

i. c ∈ (C − Si)
ii. G′ = Remove(G′, c, S, T )

iii. Si = Si ∪ {c}
6. j = argmaxi|Si|
7. ReturnSj

Fig. 4.An iterative and randomized heuristic for MKO.

be replaced in this manner are the children ofS (since elements ofS cannot appear in
the solution).

The intuition for the heuristic is to exhaustively search a small (relative to the size
of the actual pathway graph) set of nodes for the smallest knockout set forS andT . By
constructing the set of nodes so that it does contain a knockout set (though not neces-
sarily a globally minimal knockout set), the algorithm is guaranteed to find a solution,
though it may not be minimal.

Before we describe our heuristic, we review background material that will be used
in the heuristic. Given a directed graphG = (V,E), and two setsS, T ⊆ V , a path in
G is anS—T path if it runs from a node inS to a node inT . A setC ⊆ V is called
S—T disconnecting ifC intersects eachS—T path (Cmay intersectS ∪ T ).

Theorem 2. (Menger’s Theorem [20]) LetG = (V,E) be a directed graph and let
S, T ⊆ V . Then, the maximum number of node-disjointS—T paths is equal to the
minimum size of anS—T disconnecting node set.

Now, we are in position to describe our heuristic. We construct the search set,C (line
4), to have the properties of containing a knockout set and being small relative to the
number of nodes in the entire pathway graph as follows.

1. C = FindDownstream(G, S, T, ∅, ∅). By Menger’s theorem, a knockout set is
contained in the set of nodes that comprise all paths connectingS andT because
one such knockout set is a node from each disjoint path connectingS to T . Since
the Constrained Downstream Problem constructs this set,C contains a knockout
set. In addition, the constrained set of downstream nodes for most choices ofS and
T will contain far fewer nodes than the entire pathway graph.

2. C = (C∩V ◦)∪(C∩Children(S)). Lemma 1 states that, except for the nodes with
elements ofS as inputs, anyV 2 node that occurs in a minimum knockout set can
be replaced by a singleV ◦ node. Thus, by searching only theV ◦ nodes betweenS
andT , the search set is further reduced in size and still contains a knockout set.
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Fig. 5. (a) The distribution of nodes in the EGFR pathway graph by the total number of nodes in
the pathway graph they can reach. (b) A screen shot from the implementation of the model and
algorithms in this paper.

After constructing the search setC (lines 1—4), the algorithm performsm random-
ized searches over all nodes in setC for a knockout set. Within each search (loop on
line 5c), a knockout set is iteratively constructed by removing a randomly selected node
(line 5(c)i) from the graph untilS andT are disconnected. Of them knockout sets
constructed, the knockout set with fewest members is returned.

While the heuristic does not guarantee an upper-bound on error, our experiments
show that, for the Epidermal Growth Factor Receptor (EGFR) biological network [22],
this heuristic finds a minimum-knockout set every time. We discuss the experiments
and performance in more detail next in Section 5.

5 Experimental Results and Discussion

We studied the performance of the heuristic for the Minimum Knockout Problem on
the biological data set published in [22]. In this work, the authors constructed a com-
prehensive epidermal growth factor receptor (EGFR) signaling network. This network
is known to have a significant role in cancer development and proliferation. Given the
amount of research currently focused on this network, benchmarks for our heuristic
on this network will likely give a very accurate sense of how well the heuristic will
perform.

The EGFR network contains 292 interactions involving 330 different molecules.
The graph of this network is highly connected as shown in Fig. 5(b). Nearly half of the
molecules reach between 350 and 400 nodes in the graph.

To test the heuristic, we manually selected 30 pairs ofS andT node sets from the
network. The only selection criteria applied was a rough attempt to chooseS andT
so that the nodes in opposite sets were far from one another, increasing the likelihood
of non-trivial solutions. Beyond this, the nodes were selected at random. Sets varied in
size from 1 to 10.

Heuristic Accuracy:The heuristic was set to run for 100 iterations on each of the
(S, T ) pairs. In every case, the heuristic reported a minimum knockout set of size 1.
Since the smallest possible minimum knockout set has cardinality equal to 1, we con-



10 Ruthset al.

cluded that every time the heuristic correctly identified a minimum knockout set. This
result is remarkable for two reasons.

(1) A minimum knockout set of1 occurs with unexpected frequency. This result is
best explained by the degree of connectivity in the network. Fig. 5(a) shows that over
half of the nodes in the network have very extensive connectivity within the graph. This
is consistent with other studies of connectivity within biological networks [18, 2, 29].
Because of the properties of theRemoveoperation, removing such a highly connected
node from the graph will have global impact on the connectivity of other nodes.

(2) The heuristic correctly found a minimum knockout set every time. This is cer-
tainly a property of the network: if one chooses a molecule at random in the network,
there is a50% chance that it will connect to400 other nodes in the network. Ultimately,
while it is easy to envision cases that will be difficult for the heuristic to handle, our
results indicate that the EGFR network, well-studied and important in research, has few
difficult cases, if any.

We observed that, though correct, often the heuristic chose nodes which discon-
nected large sections of the graph fromS. Biologically, it is favorable to target nodes
that have the smallest global impact while still disconnectingS andT . While, prelim-
inary analysis was not able to establish whether the disconnection of these nodes was
necessary, we consider the problem of identifying the minimum knockout set that also
minimizes the number of non-Tnodes disconnected fromS to be an important exten-
sion to this problem.

Heuristic Performance:We implemented the heuristic shown in Fig. 4 in Java. A
set of100 iterations of the algorithm took approximately one second to complete on a
Apple 1.33 GHz G4 laptop running Mac OS X.

A tool implementing the model and algorithms described in this paper is available
for download. The model and algorithms are implemented in Matlab; for better perfor-
mance, the interface is implemented in Java. Fig. 5(b) shows a screenshot of the tool
in use on a small model of the AKT network. The tool can load networks stored in the
SBML format, allowing biologists to import networks designed in CellDesigner and
other biological network editors [13].

6 Conclusions and Future Work
In this paper we have presented a formal graph model that permits the use of graph the-
ory to reason about the properties of biological networks. In addition, we have charac-
terized two important research questions pertaining to biological networks, formulated
them on our model, and provided efficient and accurate algorithms for solving them. To
our knowledge, this is the first paper to formally define and propose a computational so-
lution to the Minimum Knockout Problem. Despite being NP-Hard, our heuristic shows
excellent performance on a large and important network in the research community.

Moving forward, we recognize that a useful addition to the current heuristic for the
Minimum Knockout Problem is the ability to return a set of minimum knockout sets
rather than just a single one. Furthermore, we intend to consider additional biological
constraints, such as selecting the minimum knockout set with the least impact to global
connectivity of the graph. There is also work to be done in studying other existing and
new problems under the pathway graph model.
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Abstract

Reconstructing cellular signaling networks and understanding how they work are major endeavors in cell biology. The scale
and complexity of these networks, however, render their analysis using experimental biology approaches alone very
challenging. As a result, computational methods have been developed and combined with experimental biology
approaches, producing powerful tools for the analysis of these networks. These computational methods mostly fall on
either end of a spectrum of model parameterization. On one end is a class of structural network analysis methods; these
typically use the network connectivity alone to generate hypotheses about global properties. On the other end is a class of
dynamic network analysis methods; these use, in addition to the connectivity, kinetic parameters of the biochemical
reactions to predict the network’s dynamic behavior. These predictions provide detailed insights into the properties that
determine aspects of the network’s structure and behavior. However, the difficulty of obtaining numerical values of kinetic
parameters is widely recognized to limit the applicability of this latter class of methods. Several researchers have observed
that the connectivity of a network alone can provide significant insights into its dynamics. Motivated by this fundamental
observation, we present the signaling Petri net, a non-parametric model of cellular signaling networks, and the signaling
Petri net-based simulator, a Petri net execution strategy for characterizing the dynamics of signal flow through a signaling
network using token distribution and sampling. The result is a very fast method, which can analyze large-scale networks,
and provide insights into the trends of molecules’ activity-levels in response to an external stimulus, based solely on the
network’s connectivity. We have implemented the signaling Petri net-based simulator in the PathwayOracle toolkit, which is
publicly available at http://bioinfo.cs.rice.edu/pathwayoracle. Using this method, we studied a MAPK1,2 and AKT signaling
network downstream from EGFR in two breast tumor cell lines. We analyzed, both experimentally and computationally, the
activity level of several molecules in response to a targeted manipulation of TSC2 and mTOR-Raptor. The results from our
method agreed with experimental results in greater than 90% of the cases considered, and in those where they did not
agree, our approach provided valuable insights into discrepancies between known network connectivities and experimental
observations.
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Introduction

Signaling networks are complex, interdependent cascades of

signals that process extracellular stimuli, received at the plasma

membrane of a cell, and funnel them to the nucleus, where they

enter the gene regulatory system. These signaling networks

underlie how cells communicate with one another, and how they

make decisions about their phenotypic changes, such as division,

differentiation, and death. Further, malfunction of these networks

may alter phenotypic changes that cells are supposed to undergo

under normal conditions, and potentially lead to devastating

consequences on the organism. For example, altered cellular

signaling networks can give rise to the oncogenic properties of

cancer cells [1,2], increase a person’s susceptibility to heart disease

[3], and have been shown to be responsible for many other

devastating diseases such as congenital abnormalities, metabolic

disorders and immunological abnormalities [1,4].

In light of the crucial role signaling networks play in the

proper functioning of cells and biological systems as a whole, and

given the grave consequences their alterations may have on the

behavior of cells, elucidating the connections in the networks,

and understanding how they operate, are two central questions

in cell biology. However, unlike the ‘‘pathway view’’ of signaling

as linear cascades, signaling networks are highly interconnected,

involve cross-talk among several pathways, and contain feedback

and feed-forward loops [5]. Figure 1 illustrates this issue in a

network of signaling cascades, which is stimulated by EGF and

contains several players in cancer pathways. For example,

multiple paths lead from EGFR to mTOR-Raptor, resulting in

feed-forward loops. Some of these paths activate mTOR-Raptor,

PLoS Computational Biology | www.ploscompbiol.org 1 2008 | Volume 4 | Issue 2 | e1000005



while others inhibit it. Further, the network contains two

feedback loops, one from p70S6K to EGFR and another from

MAPK1,2 to EGFR.

These and other complexities make it very difficult to analyze

signaling networks by experimental biology approaches alone. As a

result, computational methods have been developed and com-

bined with experimental biology approaches, producing powerful

tools for the analysis of these networks [6]. These computational

methods produce hypotheses that guide the experimental design,

leading to more informative experiments, while experimental

results help refine the computational models, resulting in more

accurate predictive tools.

In a recent survey, Papin et al. classified existing computational

methods into two categories: structural and dynamic network analysis

[6]. Structural network analysis is mainly based on the network’s

connectivity, which is typically readily available from numerous

public signaling network databases (e.g., [7–9]), and makes

inferences about global network properties as well as individual

protein functions. This category can be further refined into two

sub-categories, both of which are solely based on connectivity

information, yet differ in the type of answers they provide. For

example, the methods described in [10–13] infer ‘‘static’’

properties of the network, such as numbers of paths, reachability

results, etc. In a series of papers, Palsson and co-workers [6,14–16]

introduced extreme pathway analysis techniques, which are more

appropriate for metabolic networks, yet have been applied to

signaling networks to characterize various properties of networks,

such as redundancy and cross-talk. Similar analyses have also been

Figure 1. The Model Signaling Network. A MAPK1,2 and AKT network downstream from EGFR, which we assembled from various sources, and used
for the case study analysis in this work. An edge from u to v ending with an arrow indicates an activating reaction, while an edge ending with a plunger
indicates an inhibiting reaction. With the exception of TSC2, all nodes have self-inhibitory edges, which were added to model the external cellular
machinery that regulates the concentration of the active form of the proteins [36–43]. Colors were selected to enhance readability of the network.
doi:10.1371/journal.pcbi.1000005.g001

Author Summary

Many cellular behaviors including growth, differentiation,
and movement are influenced by external stimuli. Such
external stimuli are obtained, processed, and carried to the
nucleus by the signaling network—a dense network of
cellular biochemical reactions. Beyond being interesting
for their role in directing cellular behavior, deleterious
changes in a cell’s signaling network can alter a cell’s
responses to external stimuli, giving rise to devastating
diseases such as cancer. As a result, building accurate
mathematical and computational models of cellular
signaling networks is a major endeavor in biology. The
scale and complexity of these networks render them
difficult to analyze by experimental techniques alone,
which has led to the development of computational
analysis methods. In this paper, we present a novel
computational simulation technique that can provide
qualitatively accurate predictions of the behavior of a
cellular signaling network without requiring detailed
knowledge of the signaling network’s parameters. Our
approach makes use of recent discoveries that network
structure alone can determine many aspects of a
network’s dynamics. When compared against experi-
mental results, our method correctly predicted 90% of
the cases considered. In those where it did not agree, our
approach provided valuable insights into discrepancies
between known network structure and experimental
observations.

Signaling Petri Net-Based Simulator
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formalized and conducted using the principles of S- and T-

invariants in Petri Nets (e.g., [17–20]).

Methods for dynamic network analysis use, in addition to the

network connectivity, the kinetic parameters of the biochemical

reactions. The goal of these methods is to model the actual kinetics of

the network and obtain through simulation the actual quantities of

proteins involved in signal transduction. One of the most widely used

techniques in this category is systems of ordinary differential

equations (ODEs) (e.g., [21–25]). Within such a system, each

reaction is modeled by a series of equations connecting reactant

concentrations to product concentrations through differential

relationships involving reaction rate constants. Given the difficulty

of obtaining the numerical values of kinetic parameters [19,26] and

standardization of the parameters and models [27], the applicability

of these methods is limited in practice to small-scale networks [6,28].

Petri Nets have also been used for simulating the dynamics of

signaling networks [29–31]. While such approaches somewhat relax

the necessity for biologically exact kinetic parameters, current Petri

Net-based approaches still require the selection of weights and/or

probability distributions for individual interactions in the model. As a

result, selecting the values for Petri Net parameters presents

challenges similar to those encountered in ODE modeling.

Structural network analysis assumes mainly connectivity infor-

mation about the model, and provides insights into global, static

properties of the network. Dynamic analysis in general assumes

numerical values of the kinetic parameters, and provides predictions

of network dynamics by quantifying the change in concentration and

activity-level (the concentration of the active form of a given protein)

of the individual proteins and complexes in the network. To obtain a

more detailed analysis one must either solve parameter optimization

problems for a large number of molecules and interactions or

conversely experimentally derive these values.

Given the difficulty of obtaining numerical values of kinetic

parameters [19,26] and the implications this has on the

applicability of dynamic analysis methods [6], it is imperative to

develop innovative approaches that combine the attractive low

requirements of structural network analysis techniques with the

detailed answers provided by dynamic analysis techniques—

specifically the response of individual proteins to signals which

travel through the network.

Several recent efforts in this direction have produced encour-

aging results. An approach using a boolean network simulation

method, based on work in the area of gene regulatory networks,

successfully used only signaling network connectivity information

to predict the speed of signal transduction through a stomata

signaling network [32]. The use of piecewise linear systems of

ODEs have also had success in analyzing some of the dynamics of

gene regulatory and signaling networks without using exact kinetic

parameters (e.g., [33–35]). The obstacle to extending the method

in [32] to model individual protein responses to signal transduc-

tion is the boolean model used to discretize the signal as it

propagates. In a boolean model, the signal is either present or

absent at each node in the network. Such two-state models of

signal transduction simplify the underlying biochemistry to the

point where it is difficult to model changes in protein

concentration more precisely than present or absent. Modeling

such gradients of concentration changes and the effects of those

changes may be important to predicting individual protein

responses, motivating our effort to devise more fine-grained ways

to model and simulate the dynamics of signaling networks. The

challenges to using linear-piecewise ODEs to model a signaling

network center around the issue of identifying all the ODEs

required to model the underlying network as well as scalability

issues involved in simulating large systems of ODEs.

In this paper, we extend the synchronized Petri net model and

firing policy such that the resulting framework models cellular

signaling processes. We call this extension the signaling Petri net

(SPN). By coupling this with a novel strategy for Petri net

execution and sampling, we obtain a method capable of

characterizing some dynamics of signaling networks while using

only connectivity information about these networks.

To validate our method, we studied the MAPK1,2 and AKT

network shown in Figure 1 in two breast cancer cell lines. This

network was chosen because the EGFR receptor and its

downstream signaling network play a very important role in

development, differentiation, and oncogenic transformation. Two

very important signaling molecules within the cell are MAPK and

AKT, both of which can be activated by EGFR, and contains

several potential regulatory paths between them. We constructed a

model network of EGF regulation of MAPK and AKT which

includes several feedback and feed-forward loops all of which were

constructed based on experimental findings from different

laboratories around the world [36–43]. We analyzed, both

experimentally and computationally, the change in activity-level

of several proteins in response to targeted manipulation of TSC2

and mTOR-Raptor. Using the model network, the predictions

from our method agreed with experimental results in over 90% of

the cases, and in those where they did not agree, our method

correctly identified discrepancies that could be traced back to

incompleteness in the network connectivity model.

Materials and Methods

Our approach combines elements of the boolean network

simulator in [18] with a synchronized Petri net model [44]. In [18],

Li et al. present a non-parametric approach that accurately predicts

the speed of signal propagation through a network. However, as their

method assumes a binary model of activation—every protein is either

active (true) or inactive (false)—modeling a range of activity-levels is

difficult. Petri nets, while able to model concentrations using tokens,

require parameters describing the kinetic characteristics of the

network, which are typically difficult to obtain.

Our method models signal flow as the pattern of token

accumulation and dissipation within places (proteins) over time

in the Petri net. Transitions in the network represent directed

protein interactions; each transition models the effect of a source

protein on a target protein. Through transition firings, the source

can influence the number of tokens assigned to the target, called

the token-count, modeling the way that signals propagate through

protein interactions in cellular signaling networks.

In order to overcome the issue of modeling reaction rates in the

network, signaling dynamics are simulated by executing the

signaling Petri net (SPN) for a set number of steps (called a run)

multiple times, each time beginning at the same initial marking.

For each run, the individual signaling rates are simulated via

generation of random orders of transition firings (interaction

occurrences). When the results of a large enough number of runs

are averaged together, we find that the series of token-counts

correlate with experimentally measured changes in the activity-

levels of individual proteins in the underlying signaling network. In

essence, the tokenized activity-levels computed by our method

should be taken as abstract quantities whose changes over time

correlate to changes that occur in the amounts of active proteins

present in the cell. It is worth noting that some of the most widely

used experimental techniques for protein quantification—western

blots and microarrays—also yield results that are treated as

indications, but not exact measurements, of protein activity-levels

within the cell. Thus in some respects, the predictions returned by

Signaling Petri Net-Based Simulator
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our SPN-based simulator can be interpreted like the results of a

western blot or microarray experiment looking at changes relative

to ‘‘control’’.

The key insight behind our approach is the assumption that,

while all network parameters determine the actual signal

propagation to some extent, the network connectivity is the most

significant single determinant. While this is clearly a gross

simplification, several researchers have observed that the connec-

tivity of a biological network dictates, to a great extent, the

network’s dynamics [18,45–47]. Some have conjectured that

biological network connectivities have evolved to have a stabilizing

effect on the overall network behavior, making the network more

resilient to local fluctuations in other network parameters such as

reaction rates and protein binding affinities [45,47]. Here we

present the signaling Petri net (SPN) model and the signaling Petri

net-based simulator whose designs collectively utilize this assump-

tion and couple it with a Petri net tokenization scheme that

quantifies the changes in protein activity-levels that occur as

signals propagate through the network. In the following sections,

we describe the synchronized Petri net, how we extended it to

create the signaling Petri net, and a novel strategy for executing

the signaling Petri net to simulate signaling network dynamics.

Petri Nets
A Petri net is a graph that consists of two types of nodes, places,

and transitions [44]. Edges in the graph, called arcs, are directed and

connect places to transitions or transitions to places. Thus, the

Petri net is a bipartite graph. Formally, a Petri net is a 4-tuple

Q = ÆP,T,I,Oæ where

P = {p1,p2,…,pm} is the set of places,

T = {t1,t2,…,tn} is the set of transitions,

I = {i1,i2,…,ik} is the set of input arcs where for all (u,v)MI, uMP

and vMT, and

O = {o1,o2,…,ol} is the set of output arcs where for all (u,v)MI, uMT

and vMP.

In order to simulate a dynamic process, a number of tokens is

assigned to each place in order to indicate the presence of some

quantitative property. This assignment of tokens to places encodes

the state of the system and is called a marking, denoted m. A

marked Petri net, R = ÆQ,m0æ, is a Petri net with a marking m0, called

the initial marking. For the remainder of this paper, the term Petri

net (PN) refers to a marked Petri net.

Changes in the state of the system are simulated by executing the

Petri net—evaluating the effect of transitions on the marking of the

network. These changes in marking are induced by sequential firing

one or more transitions. When a transition fires, it removes a token

from each place connected to it by input arcs and adds a token to

each place connected to it by output arcs. The number of tokens

removed from inputs and added to outputs can be specified by

weighting the input arcs. However, as our extension does not use

this weighting property, we do not consider this very common PN

formulation here.

A transition can only fire when it is enabled, meaning that each of

its input places has at least one token in the current marking. If a

transition t, when fired on a marking m1, produces marking m2,

then we write m1|tæm2.

This notation can be extended to represent the effect of firing a

series of transitions. A firing sequence, s= (t1,t2,…,tj) is a sequence of

transitions. The sequence’s cumulative effect on the system’s state

is denoted m0|sæmf where m0 is the initial marking and mf is the

marking produced by the firing of the sequence of transitions in

the order specified in s. In this paper, we write ms
g to indicate the

marking produced by the first g transitions in s. Therefore, in the

above example, ms
0~m0 and ms

sj j~mf .

For a more complete introduction to types of Petri nets and

their properties, we refer the reader to [44].

Synchronized Petri nets. Synchronized Petri nets model

systems in which the firing of a transition is triggered by a specific

event that occurs in the environment. The marked Petri net is

extended to include a set of these events and a mapping function

that assigns an event to each transition. When transition t’s

assigned event occurs, transition t is fired. Formally, a

synchronized Petri net is a 3-tuple ÆR,E,Syncæ, where [44]:

R is a marked Petri net,

E = {e1,e2,…,es} is a set of events, and

Sync:TRE<{e} maps each transition in the Petri net to an

event. Event e is the always occurring event. Any transition associated

with e is always immediately fired upon becoming enabled.

When executing a synchronized Petri net, transition t is fired

when its associated event e = Sync(t) occurs. The order in which

events are generated depends upon the environment which

generates them. Just as in the marked Petri net, when a transition

fires, it removes one token from each place connected by input

arcs and gives one token to each place connected by output arcs.

As will be discussed in the next sections, we extend the

synchronized Petri net paradigm to model the dynamics of a

signaling network. To our knowledge, ours is the first use of the

synchronized Petri net to model biochemical systems. In principle

it is well suited to signaling networks since places represent

proteins, tokens represent concentrations, and transitions represent

directed protein interactions. A model of signaling event

occurrence can be used to generate events and fire transitions,

providing a way of simulating the signaling network’s behavior.

These and other design details will be discussed in the next section.

The Signaling Petri Net-Based Simulator
A high-level sketch of our simulator is given is Figure 2. Details

and rationale for specific design decisions will be discussed in

subsequent sections.

During the simulation, the input signaling Petri net is executed

multiple times on a firing sequence constructed by the signaling

event generator. The signaling event generator imposes an

ordering on transition firing such that it creates a two-time scale

simulation. The smaller time scale is discretized as the firing of a

single transition. This unit is referred to as the firing time scale.

Firing steps are nested within a larger time scale, called time blocks,

in which each transition is fired exactly once. Thus, there are |T|

firings per block. Since the simulation is run for the specified

number of time blocks, B, there are B|T| firing steps in the

simulation.

The time structure for an example simulation is illustrated in

Figure 3. This dual-time approach is necessitated by the rate

parameter sampling strategy we employ. Since the rate parameters

are not known, our method executes many simulation runs (Step 2 in

Figure 2) in order to sample the space of possible rate parameters.

The markings returned by these runs are then averaged (Step 3 in

Figure 2). The only requirement placed on the different rate

parameter values is that all events occur within the same larger time

frame—the time block. Therefore, within every time block all edges

are evaluated once, though not necessarily in the same order.

This idea of evaluating random event orderings within a two-

time scale system has appeared before in the domain of

transcriptional networks [48]. In that study, Chaves et al.

employed a two-time scale formulation of network updates similar

in concept to the one we describe here. In their work, they

assumed a boolean model of regulation and characterized the

Signaling Petri Net-Based Simulator
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effect of different relative rates of transcription within the same

network on the final steady state reached. In contrast, our method

is designed to operate on tokenized models of signaling networks

with the ultimate intent of predicting the activity-level changes of

proteins in the underlying signaling network over time.

In the next sections, we discuss in greater detail the core design

decisions underlying our method: the signaling Petri net, transition

firing, signaling network event generator, constructing the initial

marking for the model, and sampling signaling rates. We then

discuss how our strategy can be used to predict the outcome of

perturbation experiments.

The Signaling Petri Net
The goal of our method is to predict the signal flow through a

cell-specific network under specific experimental conditions. As a

result, the signaling Petri net model must characterize the

connectivity of the signaling network, the connectivity-level

network properties that are unique to the cell type and

experimental conditions under which the network is being studied,

and the signaling processes of activation and inhibition.

The signaling Petri net is a synchronized Petri net with: 1) a

specific way of modeling activating and inhibiting interactions

using places, transitions, and arcs; 2) a one-to-one correspondence

between events and transitions such that every transition is

associated with a unique event; 3) modified rules regarding how

many tokens are moved in response to a transition firing; and 4) a

signaling network event generator.

Places correspond to the activated forms of signaling proteins.

The number of tokens assigned to place p in marking ms, ms(p),

abstractly represents the amount of active protein p present in that

network state. Signaling interactions are modeled using transitions

and their connected input and output arcs. Each transition, t, is

associated with a unique signaling event, e, such that when e

occurs, transition t fires. Figure 4 shows the equivalent signaling

Petri net for a signaling network.

Formally, a signaling Petri net is a 3-tuple S = ÆR,E,Syncæ, where:

R is a marked Petri net,

E is a set of signaling events such that |E| = |T| and there is no

always occurring event, and

Sync:TRE is a one-to-one mapping which assigns each

transition a unique signaling event.

The initial marking of a signaling Petri net, m0, represents the

state of rest from which the network is starting and being simulated.

Proteins whose concentrations are known to be high can be given a

large number of tokens, and those whose concentrations are known

to be low can be assigned few or zero tokens. Attention to the initial

marking is central to modeling cell-specific networks. In many cell

lines, specific proteins are known to contain mutations that render

them perpetually active or inactive [49]. Furthermore, experimental

studies frequently involve the targeted manipulation of various

proteins within the network. Both of these phenomena induce state

changes in certain proteins at various time points that must be

modeled. The way in which these are modeled will be discussed

when the simulator design is explained.

Transition Firing
When a signaling interaction ARB (A activates B) or AxB (A

inhibits B) occurs, it has the effect of changing the state of the system

by modifying the activity-level of A and/or B. Thus, in the SPN

used to model this network, the associated transition, t, will fire at

Figure 2. A High-Level Outline of the Procedure for Simulating a Signaling Network. The input to the procedure is a signaling Petri net, S,
the number of time units to simulate the network for, B, and the number of runs for which to repeat the simulation, r. The random generation of
event ordering is employed to simulate the stochasticity in reaction rates and the differing times of signal arrivals.
doi:10.1371/journal.pcbi.1000005.g002

Figure 3. The Effects of Reaction Rates on Signal Propagation. (A) By changing the speed of signaling edge 3, the value of D at the end of a
single simulation step can be reversed. If edge 3 is slower than the cascade BRCxD, then D will be active. If edge 3 is faster than the cascade, then D
will be inactive. (B) An example of how the simulator might evaluate the individual edges during a run. In each time block, every edge is evaluated
once. Each edge evaluation corresponds to one time step. Note that the order of the edge evaluation is shuffled during each time block in order to
sample the space of possible relative signaling rates.
doi:10.1371/journal.pcbi.1000005.g003
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time t and produce marking mt+1 from mt. The way in which

mt+1 is computed from mt depends on the set of input and output

arcs attached to the transition as well as the number of tokens

moved by the transition.

The combination of input and output arcs connected to a

transition is determined exclusively by the type of interaction and

the transition firing model. However, different topologies,

combinations of input and output arcs, are needed to model the

different biochemical processes that mediate protein-protein

interactions in a signaling network. Here we examine four of the

most common biochemical processes, identify the corresponding

topological motifs, and ultimately devise a modeling policy best

suited for non-parametric simulation of signal flow.

In post-translational modification (PTM), a protein mediates the

addition or removal of a phospho group at a specific phosphor-

ylation site on another protein. In GTP/ATP binding, a protein

triggers the exchange of GDP (ADP) from GTP (ATP) on another

protein. In a recruitment process, a protein mediates the relocaliza-

tion of another protein to a different part of the cell. Finally, in a

complexing process, a protein binds to another protein to create a

complex, which can then participate in other reactions. In the first

two processes, the mediating protein usually acts as an enzyme

that participates in the reaction but is not consumed by the

reaction. In the latter two processes, the participating protein often

becomes unavailable to other reactions, transiently while the

protein recruitment is taking place and for longer durations when

complexing occurs. To model these two cases, we identified the

two different token-passing policies implemented by the different

topological motifs depicted in Figure 5.

Token consumption. In this policy, uPv consumes tokens in u

in order to generate new tokens for v. In order to model this, pu is

connected to transition t1 through an arc and pv is connected to t1
through an output arc. When t1 fires, some number of tokens in pu

are moved into pv. Similarly, uxv consumes tokens in u in order to

consume tokens in v. This is modeled by connecting pu to t2 with an

input arc and pv to t2 with an input arc. When t2 fires, some number

of tokens are removed from both pu and pv. This policy models a

recruitment or complexing event in which u binds to another

molecule, thereby creating a molecule of type v. A molecule of type u has

been consumed in order to generate or deactivate a molecule of type v.

Token conservation. In this policy, uPv generates new

tokens for v while conserving those in u. In order to model this, pu

is connected to transition t3 through a read arc. Node pv is

connected to t3 through an output arc. When t3 fires, some

number of tokens in pu is read (but not removed) and copied into

pv. Similarly, uxv consumes tokens in v while conserving those in

u. This is modeled by connecting pu to t4 with a read arc and pv to

t4 with an input arc. When t4 fires, some number of tokens in pu

are read and removed from pv. Enzymes will often behave in this

way: inducing a change in a molecule (v) without themselves

undergoing any change. A molecule of u has induced a change in a

different molecule of type v without itself changing state.

Ideally, for each interaction in the network, the associated

transition could be embedded in the topology corresponding to the

interaction’s underlying biochemical mechanism. However, connec-

tivity-level knowledge of the network does not provide this

information for each interaction. In the absence of these details,

we use one token-passing policy for all interactions in the network.

We implemented and tested both the consuming and conserving

policies and found that token conservation provides significantly

more accurate results when compared to experimentally derived

data. This is not surprising, as post-translational modification and

GTP/ATP binding events are responsible for many activation state

changes in signaling networks [1,50–52]. It is worth noting that our

approach does not restrict the net structure to token conserving

topologies. Thus, it is possible to use the token consumption

topologies where such processes are known to occur. However, as

our focus in this paper is designing a purely non-parametric

simulation method, we consider the use of information regarding the

biological mechanism of signaling as a potential way to further

improve the accuracy of our method’s predictions and identify this as

a direction for future work.

Figure 4. An Example Signaling Network and Its Corresponding Petri Net. An example signaling network (A) and its corresponding Petri net
(B). Each signaling protein in the network, A, B, and C, are designated as places pA, pB, and pC. Signaling interactions become a transition node and its
input and output arcs. Note that the connectivity for an activating edge differs from that of an inhibitory edge.
doi:10.1371/journal.pcbi.1000005.g004
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The transition topologies, as described above, do not designate

how the number of tokens added to or removed from pv is

determined. However, we know that in biochemical signaling

networks concentration has an effect on the strength of a

signaling event [53–55]. Specifically, the higher u’s concentra-

tion, the stronger its effect on v—the more tokens that pu has,

the more tokens of pv should be affected (generated or

consumed).

However, because of the stochastic nature of the underlying

biochemistry, it would be inaccurate to assume that all active u

molecules will always participate in an interaction with v. In order

to accommodate this observation, when transition t fires, we

randomly select the number of pu’s tokens to be involved in the

subsequent evaluation of the transition, which we call a signaling

event. Note that, according to our choice of topology, pu can always

be identified as the node connected to the transition by a read arc.

In this paper, we assume a uniform distribution for selecting the

number of tokens involved in a given signaling event, but

acknowledge that other distributions may be more appropriate

under certain circumstances and identify this as a topic deserving

further consideration.

Let ms(x) denote the number of tokens in node x at time s. For an

interaction (u,v), under the token conservation policy detailed

above, u’s token-count remains unchanged after the firing of t,

whereas v’s token-count is updated based on the following

formula:

ms vð Þ~
ms{1 vð Þzrandom 0,ms{1 uð Þð Þ if u activates v

max 0,ms{1 uð Þ{random 0,ms{1(u)ð Þf g if u inhibits v

�
,

where random(p,q) is a random integer drawn from a uniform

distribution over the range [p,q].

If we employ the policy of token passing with consumption, then

after ms(v) has been computed based on the formula above, ms(u) is

updated as:

ms uð Þ~ms{1 uð Þ{ min ms{1 uð Þ, ms vð Þ{ms{1 vð Þj jf g:

Signaling Network Event Generator
The SPN topology and transition token-number selection policy

alone do not specify the speed with which individual signaling

interactions occur. However, such rates must be accounted for

when simulating a signaling network. ODEs characteristically

model such details as reaction rate constants; parameterized Petri

nets specify these in a variety of ways including transition firing

rates and firing probabilities [17,30]. In synchronized Petri nets,

the environment controls the generation of events. Thus, the

signaling network event generator is responsible for controlling the

timing and ordering of signaling events. However, as our objective

is a non-parametric simulation method, our approach must either

estimate these parameters or operate without explicit knowledge of

them.

Estimating reaction rates using only connectivity is currently

beyond the predictive or inferential capabilities of computers.

While there has been some work in the area of predicting reaction

rates, all results of which we are aware require knowledge about

the mechanism of signaling (e.g., [56]). As a result, without

enriching the SPN model, it is doubtful that rate parameters can

be accurately estimated.

For this reason, the signaling network event generator operates

without explicit knowledge of the rate parameters. To compensate

for this ‘‘missing’’ knowledge, we make use of an observation of

signaling networks discussed earlier: a network’s connectivity

determines its dynamics. Several studies have found that the

connectivity of biochemical networks desensitizes them to small

fluctuations in the kinetic biochemical parameters [45–47].

Understood within the context of evolution – a stochastic process

that tweaks signaling network parameters across generations – this

is a highly desirable property as it ensures that an offspring

remains viable despite fluctuations in the exact tuning of its cellular

machinery. If this property holds, then small fluctuations in the

rate parameters should have a marginal effect on the overall

propagation of signal through the network. We can consider these

small effects to be noise obscuring the underlying dynamics of the

network connectivity. By taking many samples of the network

dynamics under a variety of reaction rate assignments and then

averaging these dynamics, we simultaneously reduce the noise

Figure 5. The Topological Motifs for Differing Signaling Processes. (A) The token consumption motifs for complexing and recruitment.
Transition t1 encodes activation of v by the binding or consumption of u. Transition t2 encodes deactivation of v by the binding or consumption of u.
In both cases, the number of tokens of pu decreases immediately after transitions t1 and t2 fire. (B) The token conserving motifs for PTM and GTP/ATP
binding. Transition t3 encodes enzymatic activation of v by u. Transition t4 encodes enzymatic inhibition of v by u. In both cases, the number of
tokens of pu remains unchanged immediately after transitions t3 and t4 fire.
doi:10.1371/journal.pcbi.1000005.g005
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introduced by any one rate assignment and strengthen the

underlying dynamic characteristics of the network’s connectivity.

However, since reaction rate constants can vary by several

orders of magnitude—from 10210 to 103, the task of correctly

selecting parameters close to the true parameters is non-trivial. In

fact, without having some estimate of the actual rate parameters, it

is unclear as to how to measure closeness at all. Clearly, these are

among the issues that make parameter estimation so difficult for

ODE and Petri net approaches. Since our comparisons will be

relative and not absolute, we take a relative approach to modeling

rate parameters. The space of possible rate values is the space of

possible signaling event orderings.

This idea is illustrated in Figure 3A. Protein A affects the activity

of protein D through two separate pathways. Assuming that A is

active to begin with, the relative speed of these two pathways

determines the final activity of D. If the pathway through C is

faster than the pathway BPD, then D will be active. However, if

the pathway speeds are reversed, then D will remain inactive. The

overall outcome of this network can be represented without any

use of numeric reaction rates by representing the reaction rates as

an ordering over all the edges in the network. We can extend this

idea to the SPN by observing that there exists a unique event for

each signaling edge in the signaling network.

This sampling strategy is the motivation for the dual-time

framework depicted in Figure 3B and implemented by the

signaling network event generator shown in Figure 6. Time blocks

are the larger time intervals during which every signaling event

occurs exactly once. Since every transition in the SPN is associated

with a unique event, each transition will fire exactly once in each

time block. Transition firings are the smaller time units that impose a

strict sequential order on the occurrence of signaling events. While

this strict sequentiality of firing models relative reaction rates, it

also discretizes the effect of signaling events. Though this is

consistent with the definition of transition firing in discrete time

Petri nets (only one transition is evaluated at a given point in time)

[44], in biological signaling networks there is no such serial

evaluation constraint. However, our validation with experimental

data suggests that this discretization approximation does not affect

the overall validity of the simulation results.

Defining the Initial State
As mentioned previously, the initial state of the SPN is the initial

marking, m0. As the SPN provides no explicit information on how

this marking should be built, we propose three ways to construct

the initial state: zero, basal, or experimentally derived. In a zero

initial state, the simulator initializes all proteins to have zero

tokens. The basal initial state is a random distribution of activation

levels intended to model the cell when no impulses due directly to

external stimuli are propagating through the signaling network.

Though a basal network is considered at rest, in general it will not

have a zero marking since signal flows are known to occur even in

unstimulated signaling networks through autocrine and paracrine

secretions by the cells. The experimentally derived initial state is

based on knowledge about the activity levels of various proteins

just prior to the addition of the external stimuli.

When accurate experimental data is available such as results from

microarrays or western blots, the experimentally derived initial state

may be the most accurate. A challenge in using experimental data,

however, is determining how best to assign numbers of tokens based

on the experimentally observed activity levels.

In the absence of reliable experimental data, the basal initial

state seems more accurate than the zero initial state. However, it

presents the challenge of properly selecting the basal activity-levels

to assign to each protein in the model network. In [18], a basal

initial state was constructed by activating a small number of

randomly selected proteins in the signaling network. However, the

work in [18] was done using a boolean model. Translating this

approach into a tokenized model creates the additional complexity

of determining how many tokens each basally active protein

should receive. The correct values are likely to depend on the

specific signaling network and experimental conditions.

We performed preliminary tests to compare the effect of using

different basal versus zero markings on the outcome of the

simulator. We found that the basal and zero states produced

indistinguishable predictions so long as less than 30% of the

proteins were activated and a small number of tokens (,5) were

used when constructing the basal marking. This is not as surprising

as it may seem at first. Inhibitory edges will quickly consume a

small number of tokens scattered throughout the network,

effectively returning much of the network to the zero state before

a stimulation event can propagate through.

Furthermore, while validating our method, we also compared

the predictions produced by SPNs based on a zero initial state and

experimentally derived initial state. These, too, did not produce

noticeably different final results for similar reasons as discussed

above. Details of these comparisons will be discussed further in the

Results and Discussion sections.

However, since all three initial state construction strategies yield

qualitatively identical predictions, using zero initial states has the

advantage of invoking the fewest unnecessary assumptions about

the network (as in the case of the basal initial state) and requiring

the least experimental data (as in the case of the experimentally

derived state). Nonetheless, in our implementation of the tool, we

allow for using any one of these three initial state construction

strategies.

Modeling Cell-Specific Signaling Networks
Whereas consensus signaling networks typically represent the

connectivity in normal cells, many experiments are conducted on

abnormal cells in which oncogenic mutations, gene knockouts, and

pharmacological inhibitors have altered the behavior of various

signaling nodes in the network. In an SPN, these alterations to the

signaling network can be modeled by adding/removing transitions

Figure 6. The Algorithm That Implements the Signaling
Network Event Generator. This routine generates the time block/
firing structure. Given a set of events, E, and the number of blocks for
which the SPN will be executed, n, GENERATESIGNALINGEVENTS generates n
blocks of events, each consisting of |E| events ordered randomly. In
each block, every event in E occurs exactly once.
doi:10.1371/journal.pcbi.1000005.g006
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(and associated input/output arcs) and explicitly setting the token

count for various proteins in the initial state.

The two network alterations which are commonly induced by

oncogenic mutations, gene knockouts, or pharmacological inhib-

itors are constitutively high or low protein activity-levels, meaning

that a protein is either unable to be inhibited or unable to be

activated. The simulator allows for proteins to be specified as

either fixed High or Low. Here we explain how these are modeled

by changes to the SPN.

If protein u is fixed high, then this protein cannot be inhibited.

Thus, all transitions that remove tokens from pu are removed from

the SPN. The fact that u is high, however, also suggests that it

maintains a higher activity level in general. Therefore, in the initial

state, m0(pu) = H, where H is a non-zero number of tokens. Since

all inhibiting transitions have been removed from the SPN,

throughout any execution, place pu will always have at least H

tokens.

In experiments, we have observed that the choice of the value of

H does not change the relative outcome of the simulations. While

H will affect the actual number of tokens present in a given place

as well as the number of time blocks required to observe certain

activity-level changes, the relative changes in activity-level

(number of tokens) among different proteins (places) does not

change. As a result, one is free to select any reasonable value of H

(for our experiments, we used H = 10) as long as this H is held

constant across all simulations whose results will be compared.

If protein u is fixed low, then this protein cannot be activated.

Thus, all transitions that add tokens to pu are removed from the

SPN. The fact that u is low, however, also suggests that it

maintains a constantly low activity level in general. Therefore, in

the initial state, m0(pu) = L, where L is a small number of tokens (in

our simulations we use L = 0). Since pu is only inhibited, we

observed that all constitutively low proteins quickly had their

marking reduced to zero.

Unlike the value of H, extra caution must be taken when

selecting values for representing L. A value of L that is too large

can destabilize the early propagation of signal through the

network. In our experiments, we obtained best results for values

of L very close to or equal to zero (L#2). Beyond this, the final

results obtained depended on other values in the network, the

strength of the signal, and the duration of the simulation.

Simulating a Signaling Network
Figure 7 provides more detailed versions of the simulation

algorithm outlined in Figure 2. Steps 1 and 2 of the SIMULATE

procedure constructs the initial marking and net topology to

incorporate perpetually high proteins, H, and perpetually low

proteins, L. In this paper, proteins that are assigned high activity-

levels receive an initial token count of 10 in order to model a

higher-than-average initial activity-level. As discussed earlier,

using other values of H scale the activity-levels of all the proteins

in the network, but will not qualitatively change their relative

activities.

The loop in Step 3 runs r individual simulation runs. Each run

receives a different event ordering, se, thereby implementing the

interaction rate sampling strategy. The time block/step structure is

contained within the ordering se (see Figure 6C). As a result, the

SPN execution step simulates the events by firing their associated

transition. Only those markings that correspond to time block

boundaries are sampled.

After SIMULATE finishes collecting the time block markings from

all the runs, Step 4 computes the average markings for each time

block and Step 5 returns these averages.

Simulating a Perturbation Experiment
We tested the accuracy and performance of our method by

simulating the effect of two different targeted manipulations to a

well-known signaling network. We compared these predictions to

experimental results produced by performing the actual manip-

ulations on two separate cancer cell lines.

The perturbations we considered in this study altered the

constitutive activity-level of various proteins in the network (as

opposed to affecting specific signaling interactions). Therefore, we

modeled the perturbations as changes in the high and low

proteins—Hc and Lc for the control (unperturbed) network and Hp

and Lp for the perturbed network.

A variant of the SIMULATE method was required to quantify how

a perturbation changed the protein token-counts for each time

block. Figure 8 shows the algorithm we used. In the procedure

DIFFERENTIALSIMULATE, the input S provides the consensus SPN.

Inputs Hc and Lc specify the control high and low proteins, the

inputs Hp and Lp specify the perturbed high and low proteins.

After Steps 1–5 construct two separate SPNs for the control and

perturbed conditions, the loop in Step 6 performs r independent

simulations over the control and perturbed models. Step 6d

computes the difference between the markings at the end of each

time block in the perturbed and control networks. The marking

difference d i
j~mp

j {mc
j yields the marking d i

j where di
j vð Þ~

m
p
j vð Þ{mc

j vð Þ for each vMP. Following the loop, the marking

differences are averaged to obtain the time series (D1,D2,…,DB)

where Db(v) is the average change in the token-count for protein v

at time block b.

For values of |Db|.0 for a given molecule v, we can conclude

that the perturbation caused a change in the activity-level of v at

time block b only if the difference observed is statistically

Figure 7. The Procedure for Simulating a Signaling Petri Net.
SIMULATE predicts the signal flow through the SPN S. The simulation is
run for B time blocks; the results of r runs are averaged to produce the
final result. Most of the work is done by the signaling Petri net
execution procedure detailed in the preceding sections. This execution
actually performs an individual run. This procedure takes the initial
marking, m0, and applies the sequence of transitions triggered by the
event sequence, se. This ordering, generated by the algorithm in
Figure 6, has the dual time structure in which each block of edges
contains every event in E exactly once. Each firing evaluates the effect
of one transition. The markings at the end of each time block are
extracted in Step 5.
doi:10.1371/journal.pcbi.1000005.g007
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significant. We use a t-test to determine whether this change is

statistically significant for protein v at time block b. Computing the

t-test for two distributions (control and perturbation) requires

knowledge of the mean (mc,b and mp,b) as well as the variance

s2
c and s2

p

� �
for both distributions. In order to obtain these

parameters for the control network, a large number, X, of

independent simulations is run. Simulation i provides a single

series of markings, mi
1,mi

2, . . . ,mi
B

� �
. The mean is then computed:

mc,b,v~

PX
i~1

mi
b vð Þ

X
:

The variance is computed similarly:

s2
c,b,v~

PX
i~1

mi
b vð Þ{mc,b,v

� �2

X{1
:

The parameters mp,b,v and s2
p,b,v for the perturbed network are

computed as described above by substituting the perturbed network

for the control network. Using these parameters, the t-value for

molecule v at time block b can be computed from the formula

t{value~
mc,b,v{mp,b,vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
c,b,v

X
z

s2
p,b,v

X

q :

The statistical significance of the difference can then be obtained by

comparing the t-value to the desired critical value.

Note that the DIFFERENTIALSIMULATE procedure and the

associated significance test can predict the effect not only of

perturbations, but also of any two different experimental (or

cellular) conditions imposed on the same signaling network. As

a result, in addition to perturbation experiments, our method

can also be used to study the effects of other phenomena that

induce changes in the propagation of signal through a signaling

network.

Cell-Specific Signaling Network Models
Figure 1 shows the signaling network we analyzed. We obtained

the core connectivity from a published literature survey on the

EGFR network [57]. We added to this several other well-

established interactions taken from literature [36–43]. The

response of this network to various perturbations was measured

and simulated in two separate breast cancer cell lines: MDA231

and BT549. The core signaling Petri net used, SEGFR, is captured

by the following signaling proteins and interactions: places (the set

P): vEGFR, vSRC, vRac, vMEKK4, vMEK4, vJNK, vMEKK6, vMEK6,

vSTAT, vGrb2, vShc, vSOS, vRB, vELK, vBAD, vNFKB, vRAS, vGAB1,

vPIP3, vPI3K, vPDK1, vPTEN, vc-Raf, vAKT,vLKB1, vMEK, vGSK3b,

vAMPK, vTSC2, vMAPK1,2, vRSK, vRheb, vmTOR-Raptor, v4EBP1,

vp70S6K, vp38, and vpS6.

Protein interaction network motifs (the combination of arcs and

transitions): vEGFRRvGrb2, vGrb2RvShc, vShcRvSOS, vSOSRvRAS,

vGrb2RvGAB1, vGAB1RvPI3K, vEGFRRvSRC, vSRCRvSTAT,

vPI3KRvPIP3, vPIP3RvPDK1, vRASRvc-Raf, vPDK1RvAKT, vRASR
vRac, vRacRvMEKK4, vMEKK4RvMEK4, vMEK4RvJNK, vJNKR
vSTAT, vRacRvMEKK6, vMEKK6RvMEK6, vMEK6Rvp38, vp38R
vSTAT, vPDK1Rvp70S6K, vPTENxvAKT, vAKTxvc-Raf, vAKTxvGSK3b,

vAKTxvTSC2, vAKTxvAMPK, vAKTxvBAD, vAKTRvNFKB, vAKTR
vp70S6K, vLKB1RvAMPK, vMEKRvMAPK1,2, vMAPK1,2RvRB,

vMAPK1,2RvELK, vMAPK1,2RvSTAT, vGSK3bRvTSC2, vAMPKR
vTSC2, vMAPK1,2xvEGFR, vMAPK1,2xvTSC2, vMAPK1,2Rvp70S6K,

vMAPK1,2RvRSK, vRSKxvTSC2, vTSC2xvRheb, vRhebRvmTOR-Raptor,

v
AKT

RvmTOR-Raptor, vmTOR-RaptorRv4EBP1, vmTOR-RaptorR
vp70S6K, vp70S6KxvEGFR, vSRCxvSRC, vRacxvRac, vMEKK4xvMEKK4,

vMEK4xvMEK4, vJNKxvJNK, vMEKK6xvMEKK6, vMEK6xvMEK6,

vSTATxvSTAT, vGrb2xvGrb2, vShcxvShc, vSOSxvSOS, vRASxvRAS,

vc-Rafxvc-Raf, vMEKxvMEK, vMAPK1,2xvMAPK1,2, vRBxvRB, vELKx

vELK, vRSKxvRSK, vGAB1xvGAB1, vPIP3xvPIP3, vp38xvp38, vPI3Kx

vPI3K, vPDK1xvPDK1, vAKTxvAKT, vBADxvBAD, vNFKBxvNFKB,

vAMPKxvAMPK, vmTOR-RaptorxvmTOR-Raptor, vp70S6Kxvp70S6K,

vpS6xvpS6, v4EBP1xv4EBP1.

Notice that the last several edges are self-inhibitory loops (e.g.,

vRasxvRas). These loops are used to model regulatory mechanisms

that are not present in the model network.

For molecules that do not have specific inhibitory edges

modeled in the network, we use the self-inhibitory loop to prevent

exponential increase in the token counts and to model inhibitory

mechanisms beyond the scope of the network. For example,

consider the molecule Ras in the network shown in Figure 1. In

the model, this protein is not inhibited. However, biologically we

know that Ras has intrinsic GTPase function which inactivate

itself. In order to model this, we introduce a self-inhibitory loop.

The differences between the two cell-specific networks are

captured by following activity assignments to various proteins in

the SPN. In the MDA231 cell line, HMB = {vRas, vEGF} and

LMB = Ø. In the BT549 cell line, HBT = {vEGF} and

LBT = {vPTEN}.

Of the two perturbations we considered, one significantly

knocked down the activity-level of TSC2 and the other knocked

down mTOR-Raptor. While the core SPN still modeled these

networks, separate perturbed activity-assignments were required for

each cell line-perturbation pairing: LMB-TSC2 = LMB<{vTSC2},

Figure 8. The Algorithm for Predicting the Effect on Signal
Propagation of a Targeted Manipulation. The algorithm for
predicting the effect on signal propagation of a targeted manipulation
on signaling network with connectivity G. The ‘c’ and ‘p’ superscripts
are used to denote parameters in the control and perturbed versions,
respectively, of the SPN.
doi:10.1371/journal.pcbi.1000005.g008
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LMB-mTOR = LMB<{vmTOR-Raptor}, LBT-TSC2 = LBT<{vTSC2} and

LBT-mTOR = LBT<{vmTOR-Raptor}.

Setup for Perturbation Experiments
Cell culture and stimulation. Human MDA-MB-231

(MDA231) and BT549 breast cancer cells were routinely

maintained in RPMI supplemented with 10% FBS. For signaling

experiments, logarithmically growing cells were serum-starved for

16 hours and then subjected to treatments by epidermal growth

factor (EGF) (20 ng/mL) (Cell Signaling Technology, Beverly,

Massachusetts) for 30 minutes. Controls were incubated for

corresponding times with DMSO. To knock down TSC2, cells

were treated with short interfering RNA (siRNA) (Dharmacon,

Lafayette, Colorado) for 72 hours prior to EGF stimulation. Control

cells were transfected with non-targeting (N/T) siRNA (Dharmacon,

Lafayette, Colorado) prior to EGF treatment.

Antibodies. The following antibodies were used for

immunoblotting: anti-phospho-p44/42 MAPK, anti-phospho-

GSK3b (S21/S9); anti-phospho-AKT(ser473); anti-phospho-

TSC2(T1462); anti-phospho-mTOR(S2448); anti-phospho-

P70S6K(T389) (Cell Signaling Technology, Boston,

Massachusetts); and anti-b-Actin (Sigma-Aldrich, St. Louis,

Missouri).

SDS-PAGE and immunoblotting. Cells were lysed by

incubation on ice for 15 minutes in a sample lysis buffer

(50 mM Hepes, 150 mM NaCl, 1 mM EGTA, 10 mM Sodium

Pyrophosphate, pH 7.4, 100 nM NaF, 1.5 mM MgCl2, 10%

glycerol, 1% Triton X-100 plus protease inhibitors; aprotinin,

bestatin, leupeptin, E-64, and pepstatin A). Cell lysates were

centrifuged at 15,000 g for 20 minutes at 4uC. The supernatant

was frozen and stored at 220uC. Protein concentrations were

determined using a protein-assay system (BCA, Bio-Rad,

Hercules, California), with BSA as a standard. For immuno-

blotting, proteins (25 mg) were separated by SDS-PAGE and

transferred to Hybond-C membrane (GE Healthcare, Piscataway,

New Jersey). Blots were blocked for 60 minutes and incubated

with primary antibodies overnight, followed by goat anti-mouse

IgG-HRP (1:30,000; Cell Signaling Technology, Boston,

Massachusetts) or goat anti-rabbit IgG-HRP (1:10,000; Cell

Signaling Technology) for 1 hour. Secondary antibodies were

detected by enhanced chemiluminescence (ECL) reagent (GE

Healthcare, Piscataway, New Jersey). All experiments were

repeated a minimum of three independent times.

Setup for perturbation simulations. To select the block

duration parameter, B, we compared the experimentally derived fold

change of AKT in the MDA231 cell line to the AKT fold changes

predicted for B = 10, 20, 50, 100, and 1000. We found B = 20 to be

the best fit and used this value for all simulations in this study.

We also experimented with input parameter r, the numbers of

individual simulation runs averaged per simulation. We tried a

range extending from r = 100 to r = 1000. We found that no

observable changes occurred in trends for r$400. Therefore,

r = 400 was used for all simulations in this study.

We considered both the zero and experimentally derived initial

states as the initial markings for the TSC inhibition simulations.

The experimental states for both cell lines were derived from

western blots produced from cells that were incubated in DMSO

and serum-starved for 16 hours. Unsampled molecules were

assigned a marking of zero. The number of tokens assigned to

each sampled molecule was directly proportional to the darkness

of the line on the western blot. This assignment was done by hand,

though devising automated and standardized methods for the

construction of experimentally derived initial states is an important

direction for future work. Since most of the molecules in the

network were not sampled, only mTOR-Raptor, TSC2, GSK3b,

p70S6K, AKT, and MAPK were given non-zero markings. The

initial markings used are shown in Table 1.

Since experimental results for the mTOR-Raptor inhibition

were obtained from literature, we did not have experimental

results for construction of experimentally derived initial states.

Therefore, we used the zero initial states for the mTOR-Raptor

inhibition simulations.

Results

In order to evaluate the accuracy of our simulation method, we

tested its predictions of the effect of targeted manipulations on two

cell-specific versions of the signaling network depicted in Figure 1.

In each cell line, a TSC2-specific siRNA was applied and the

concentration of several key proteins in the EGFR network were

sampled 30 minutes after stimulation with EGF. This was

repeated in the absence of the TSC2 siRNA in order to obtain

the concentration in the control network. We also collected a

corpus of literature detailing the response of signaling proteins

activity-levels to the inhibition of mTOR-Raptor using Rapamya-

cin [43,58]. Predictions were generated by our simulator for the

TSC2 and mTOR-Raptor perturbations in both cell lines.

Simulation
To simulate a perturbation, we used two networks both based

on the signaling network shown in Figure 1: the control network

for the cell line and the perturbed network for the cell line. The

control networks for the cell lines were different because it was

important to model the cell-specific mutations. In the case of the

BT549 cell line, there is a mutation that leads to the loss of PTEN,

which makes AKT always active. In the MDA231 cell line, there is

a mutation in Ras, which makes it always active. As shown in the

formulation of the model, these are modeled using fixed activity

assignments in the simulator.

The TSC2 (mTOR-Raptor) perturbed network for a cell line

was created by taking the control network and fixing the activity-

level of TSC2 (mTOR-Raptor) to zero for the duration of the

simulation, effectively simulating the pharmacological inhibition of

the protein. For each cell-line/perturbation pair, we ran the

simulator on the control and perturbed networks using the

DIFFERENTIALSIMULATE procedure in Figure 8 which computed the

change in token-counts induced by the perturbation for all

proteins in the model. These change plots are shown in Figure 9

for TSC2 and in Figure 10 for mTOR-Raptor. We ran the

simulations using both experimentally derived initial states as well

Table 1. Experimentally Derived Initial Markings Used in the
Simulations.

Molecule MB231 BT549

Control
TSC2
Inhibited Control

TSC2
Inhibited

mTOR-Raptor 0 1 5 5

TSC2 0 0 6 0

GSK3b 5 3 3 6

p70S6K 0 2 0 0

AKT 0 0 7 7

MAPK 2 6 1 2

doi:10.1371/journal.pcbi.1000005.t001
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as zero initial states. The initial state used did not change the

overall trends observed in the simulations.

Using the t-test described in the Methods section, we also

computed the statistical significance of the final time block (b = 20)

for each molecule considered. For each molecule considered, 400

runs, 20 time blocks, and 50 samples were used. With the

exception of GSK3b which did not show a significant response to

the perturbation, the changes of all other proteins sampled were

beyond the 0.05 significance level (see Table 2). The statistical

insignificance of the change in GSK3b is not surprising since, as

shown in Figure 1, GSK3b is solely activated by LKB, a molecule

fixed high in both cell lines. Thus, we should not expect either

perturbation to have a significant effect on the activity of GSK3b,

which is what the t-value indicates.

Experimental Results
After the TSC2 perturbation was applied to a cell line, the

protein concentrations were collected using western blots. Details

are given in the Materials and Methods section. The western blot

results are shown in Figure 9.

Discussion

As can be seen in Table 3, our method correctly predicted the

relative protein activity-level changes induced by the TSC2

perturbation in both cell lines, for most molecules sampled.

Notice that no change (–) was reported for the predicted response of

MAPK to the TSC2 perturbation despite the fact that a small

change did occur in its marking during the simulation (see Figure 9)

Figure 9. The Results of the TSC2 Perturbation Experiments and Simulations. In the western blots, columns (or lanes) are as follows: (1)
non-targeting (NT) control siRNA, (2) NT siRNA+EGF, (3) TSC2 siRNA, (4) TSC2 siRNA+EGF. The effect of the TSC2 siRNA on a given molecule can be
assessed by comparing column 4 against column 2. For each molecule in the western blot, there is a corresponding simulation curve showing the
predicted change in protein activity over time. For the purposes of this analysis, we compared the concentration change after 20 time steps (the left-
most data points in the plots) for each molecule. Each simulation point corresponds to the average of 400 measurements that were computed using
the procedure described in Figure 8. Experimentally derived initial states were used in the simulations. The results of both the experiments and
simulations are qualitatively summarized in Table 3.
doi:10.1371/journal.pcbi.1000005.g009
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and the t-value for the change is significant (see Table 2). At first,

interpreting this value as no change may seem misleading. However,

one of the significant challenges in experimental perturbation

experiments is separating true system responses from the

background noise created by experimental variables that cannot

be precisely controlled (among them cell population sizes,

variability in microarray antibody binding effectiveness, and

limited sensitivity of hardware and software used to quantify

experimental results). As a result, a common practice is to only

consider those substantial changes that are well beyond the

background noise level. Our interpretation of the small predicted

change in MAPK as no change reflects the fact that such small

changes would not be detectable in microarray or western blot

results. Thus, though such a small fluctuation might have occurred

in the real data, it would not have been detected by the biologists

and most likely would appear in the experimental data to have not

changed.

Similar reasoning guided our decision to characterize the

simulation (and experimental) results as either up (q), down (Q),

or no change (2) in general. Since the amount of protein

registered in a microarray or western blot is not always a reliable

indicator of the exact amount of protein (or protein form) being

measured, biologists are often reluctant to report degrees of

increases or decreases—preferring binary observations such as up

or down which are less subject to influence by extraneous

experimental conditions. It is true that our simulation method

produces precisely quantified increases or decreases which can be

taken to indicate degrees of change in response to perturbations.

However, as experimental techniques cannot reliably measure

degrees of increase or decrease, we judged the binary (up or down)

characterization to be a more reliable way of validating our

method. Certainly, our method provides additional information of

Figure 10. The Predicted Response of the Network to an mTOR-Raptor Perturbation. The predicted response of the network to a mTOR-
Raptor perturbation in the (A) MDA231 and (B) BT549 cell lines. Our method predicts that the amount of available AKT increases in response to the
perturbation, which is in agreement with results published in the literature [43,58]. Our method also predicts that the activity-level of p70S6K in the
MDA231 cell line decreases in response to the perturbation, which has been observed experimentally [59]. Each point corresponds to the average of
400 measurements that were computed using the procedure described in Figure 8.
doi:10.1371/journal.pcbi.1000005.g010

Table 2. The T-Values for the Molecules Sampled in the
Microarray.

Molecule t-Value in MDA231 t-Value in BT549

mTOR-Raptor 41.72 30.53

TSC2 21.65 8.28

GSK3b 0.42 0.10

p70S6K 14.22 5.83

AKT 6.60 9.55

MAPK 16.35 18.93

The critical value for an alpha value of 0.05 with 50 samples is 2.0086. Note that
the t-values for all molecules except for GSK3b are larger than this value,
confirming that these changes are statistically significantly.
doi:10.1371/journal.pcbi.1000005.t002

Table 3. Summary of the Effect of Perturbation Reported by
Experimental and Simulated Methods.

Molecule MB231 BT549

Experiment Simulation Experiment Simulation

mTOR-Raptor q q q or 2 q

TSC2 Q Q Q Q

GSK3b 2 2 2 2

p70S6K q q Q q

AKT Q or 2 Q Q Q

MAPK 2 2 2 2

The up arrow (q) indicates that the perturbation caused a rise in the level of
the phosphorylated protein; the straight line (2) indicates no change; and the
down arrow (Q) indicates that a decrease occurred. Values in the Experiment
column were estimated by comparing lanes 4 and 2 in Figure 9. We estimated
the Simulation column by determining whether the top quartile of the
distribution for the final time point was above, below, or at zero. In some cases
it is difficult to judge for certain whether the total quantity of the
phosphorylated protein changed or remained the same—both for the
experimental and computational cases. In these situations, we indicated the
uncertainty by listing the possible changes that the protein could have feasibly
undergone.
doi:10.1371/journal.pcbi.1000005.t003
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degrees of change and we consider studying the accuracy of these

degrees to be an important area for future work.

Our method also correctly predicted the activity-level change of

AKT in response to mTOR-Raptor inhibition as reported by a

number of studies [43,58]. Further, our method predicted that,

when mTOR-Raptor is inhibited, the level of p70S6K in the

MDA231 cell line decreased, which also had been observed

experimentally [59].

The only incorrect prediction made by our method was the

activity-level change of p70S6K in the BT549 cell line. However,

BT549 cells contain an RB mutation [49] which could alter

p70S6K phosphorylation [60]. It is a strength of our simulator that

the discrepancy between our method’s predictions and the

experimental results identified a section of the model in which

additional connectivity has been found which might account for

the difference observed.

The predictions made by our simulator would be exceedingly

difficult to derive by visual or manual inspection. Table 4 shows the

number of paths between several pairs of compounds within the

network. Where there is more than one path connecting two

molecules, feed forward and feed backward loops are present.

Attempting to determine, by hand, how these different loops will

interact with one another is, by itself, a difficult endeavor even when

not considering the additional task of deriving the rest of the network

dynamics simultaneously. For the larger networks that are now

becoming available, computational analysis becomes even more

crucial to obtaining insights into the dynamic behavior of the network.

Despite the complexity of the network dynamics, it was

straightforward to find and integrate the connectivity information

used to build it. Most of the information sources [36–43]

established the existence of various pathways and provided few or

no biochemical or kinetic details. As a result, the literature we used

would have provided little assistance is building a parameterized

Petri net or ODE model. Due to the proliferation of curated

signaling network repositories and searchable literature archives,

connectivity information is relatively abundant which makes the

ad hoc assembly of networks a relatively straightforward endeavor.

This further underscores the advantage of using our method over

ODEs or parameterized Petri nets to quickly model and

characterize some of the dynamics of a signaling network.

For simulations that will be compared to experimental results, the

time parameter must be selected carefully. The time parameter, B,

indicates how many time blocks our method will simulate. The time

block is an abstract unit of time. Therefore, before comparing

experimental results and predictions, it is necessary to determine how

many seconds, minutes, or hours correspond to a time block. This

can be done by comparing a prediction of the simulator with the

experimentally measured activity-level of one or two proteins at

several time points in order to determine what time blocks

correspond to the different sampled time points. In the present

study, we calibrated our time blocks only once for two cell lines and

six experimental conditions (two cell lines, with/without TSC2,

with/without mTOR-Raptor). To select the time parameter we used

the experimentally measured activity changes in two proteins at two

time points. In contrast to other predictive dynamic analysis tools

which require multiple time points and multiple protein samples in

order to calibrate simulation and model parameters, our method has

relatively low time and resource investment.

Besides the time parameter, the other component of our

simulations which involved experimentally obtained knowledge

was the initial states. The experimentally derived initial states

require that some experimental data be available providing

information on the initial concentrations of individual signaling

proteins in the network prior to stimulation. However, in the

network that we considered here, the overall behavior of the

network and of individual signaling proteins was resilient to

changes in the initial states used. Zero and experimentally derived

both produced the same overall change predictions. Thus, while

experimentally derived initial states may be important for the

simulation of some networks, it may well be the case that many

networks (such as the one we considered in this paper) can be

simulated without this knowledge—further reducing the experi-

mental work that must be done prior to simulation.

The fact that our simulator produced accurate predictions for a

variety of experimental conditions using the one core network

model and set of simulation parameters also distinguishes our

method from other predictive approaches. The only aspects of the

model that were modified during the simulations were activity-

levels reflecting the immediate effects of either the underlying

tumor mutations (Ras and PTEN) or the perturbations (mTOR-

Raptor and TSC2 targeted manipulation). In contrast, the

accuracy of ODEs and Petri nets predictions are known to be

sensitive to small changes to the model. For comparative studies

such as the one conducted in this paper, an ODE or

parameterized Petri net model might need to be re-constructed

with different parameters for each experimental condition of

interest. As a result, while it is possible to obtain our simulation

results using these models, it remains beyond the capabilities of

any existing ODE or parameterized Petri net system to provide

insights into the effects of experimental conditions on the dynamic

behavior of a signaling network with so little initial time and

resource investment.

Though our method’s predictions will not be as accurate as the

results returned by a correctly parameterized ODE, biologists

using our method can derive information about a network’s

dynamic behavior without having to conduct extensive experi-

mentation and computationally expensive parameter estimation.

This novel capability offers scientists the exciting prospect of being

able to test hypotheses regarding signal propagation in silico. As a

result, by using our method researchers can evaluate a wide array

of network responses in order to determine the most promising

experiments before even entering the laboratory.
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Table 4. Number of Paths Connecting Several Pairs of
Compounds in the EGFR Model Used in Our Simulations

Source Protein Destination Protein Number of Paths

EGFR TSC2 7

AKT mTOR-Raptor 6

MEK EGFR 4

AKT p70S6K 8

The multiple paths connecting pairs of proteins highlight the complex
interactions present within the network that give rise to its overall dynamic
behavior.
doi:10.1371/journal.pcbi.1000005.t004
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Abstract
Background: In systems biology the experimentalist is presented with a selection of software for
analyzing dynamic properties of signaling networks. These tools either assume that the network is
in steady-state or require highly parameterized models of the network of interest. For biologists
interested in assessing how signal propagates through a network under specific conditions, the first
class of methods does not provide sufficiently detailed results and the second class requires models
which may not be easily and accurately constructed. A tool that is able to characterize the dynamics
of a signaling network using an unparameterized model of the network would allow biologists to
quickly obtain insights into a signaling network's behavior.

Results: We introduce PathwayOracle, an integrated suite of software tools for computationally
inferring and analyzing structural and dynamic properties of a signaling network. The feature which
differentiates PathwayOracle from other tools is a method that can predict the response of a
signaling network to various experimental conditions and stimuli using only the connectivity of the
signaling network. Thus signaling models are relatively easy to build. The method allows for tracking
signal flow in a network and comparison of signal flows under different experimental conditions. In
addition, PathwayOracle includes tools for the enumeration and visualization of coherent and
incoherent signaling paths between proteins, and for experimental analysis – loading and
superimposing experimental data, such as microarray intensities, on the network model.

Conclusion: PathwayOracle provides an integrated environment in which both structural and
dynamic analysis of a signaling network can be quickly conducted and visualized along side
experimental results. By using the signaling network connectivity, analyses and predictions can be
performed quickly using relatively easily constructed signaling network models. The application has
been developed in Python and is designed to be easily extensible by groups interested in adding
new or extending existing features. PathwayOracle is freely available for download and use.

Background
Reconstructing cellular signaling networks and under-
standing how they work are major endeavors in cell biol-
ogy. The scale and complexity of these networks, however,

render their analysis using experimental biology
approaches alone very challenging. As a result, computa-
tional methods have been developed and combined with
experimental biology approaches, producing powerful
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tools for the analysis of these networks. These tools aid
biologists in interpreting existing experimental findings,
evaluating hypotheses, enumerating possible biological
behaviors, and, ultimately, in quickly designing experi-
ments that maximize the amount of useful information
gained. By assisting biologists in maximizing the amount
of information obtained from their experiments through
improved experimental design and more thorough analy-
sis of results, computational tools increase the pace of sci-
entific discovery.

Biological network analysis can generally be classified as
either structural or dynamic [1]. Structural analysis pro-
vides insights into global properties of the network,
among them decomposition of the network into func-
tional modules (e.g., [2]), enumeration of signaling paths
connecting arbitrary protein pairs (e.g., [3-5]), and the
identification of key pathways that determine the behav-
ior of the network (e.g., [2,6-10]). Dynamic methods, on
the other hand, simulate the actual propagation of signals
through a network by predicting the changes in the con-
centration of signaling proteins over time. These predic-
tions will be of varying degrees of resolution and accuracy,
depending largely on the accuracy and level of detail of
the model from which they are produced.

The prevailing methods for dynamic analysis involve sys-
tems of ordinary differential equations (ODEs) [11,12].
These approaches require kinetic parameters for the indi-
vidual biochemical reactions involved in the signaling
process. This requirement often poses a significant hurdle
for researchers as the numerical values of such parameters
are difficult to obtain and may be the object of the
researcher's project in the first place. In [13], we presented
a novel signaling network simulation method which uses
a non-parametric Petri net model of network to predict
the signal flow under various experimental conditions.
Our simulation method uses a novel technique to approx-
imate the interaction speeds and predicts the qualitative
behavior of the signaling network dynamics.

The advantage of our method over ODEs is the wide avail-
ability of connectivity-based models of signaling net-
works, and the relative speed with which they can be
constructed. Numerous databases exist which catalog
known signaling interactions (e.g., [14-16]). Thus, the
existence and type (activating or inhibition) of an interac-
tion can often be inferred directly from literature and/or
these databases. This presents a stark contrast to the
kinetic parameters required by ODEs, the numerical val-
ues for many of which must be determined experimen-
tally for each experimental condition and cell line of
interest [2].

In this paper, we present the software tool PathwayOracle,
an integrated environment for connectivity-based struc-
tural and dynamic analysis of signaling networks, sup-
porting

• visualization of signaling network connectivity;

• two versions of the simulation method described in [13]
where

- the first allows prediction of signal flow through a given
network for a specific experimental condition, and

- the second predicts the difference in signal flow through
a given network induced by two different experimental
conditions;

• enumeration of the paths connecting arbitrary pairs of
nodes in the network; and

• visualization of experimental concentration data on the
signaling network display.

In future releases we plan on expanding capabilities in all
three areas of analysis – dynamic, structural, and experi-
mental – with a focus on providing effective ways of inte-
grating results from each together.

PathwayOracle has been designed in a modular fashion in
order to facilitate extension of existing capabilities and the
addition of new features.

Since PathwayOracle's most distinctive analytical capabil-
ity involves the signaling Petri net simulator, a new
dynamic analysis technique for signaling networks, we
first provide an overview of the signaling Petri net mode-
ling approach. Then in subsequent sections, we focus on
PathwayOracle and explain the architecture and core con-
cepts underlying the tool and then examine the individual
features, how they can be used, and how they compare to
existing tools.

The Signaling Petri Net Simulator
Petri nets provide a graphical and executable model of
processes in which information or material flows among
a series of places or entities [17]. A Petri net consists of
places, transitions, and tokens (see Figure 1). Quantities
of tokens are assigned to individual places. This assign-
ment is called a marking. As Figure 1 illustrates, the net-
work flow is modeled by the reassignment of tokens to
individual places in the Petri net in response to transition
firings.

A signaling Petri net is an extension of the Petri net for-
malism to model a signaling network. Places are signaling
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proteins and transitions implement directed protein inter-
actions; each transition models the effect of a source pro-
tein on a target protein. The marking of (number of
tokens in) protein p at time t is interpreted as the activity-
level of that protein – the number of activated molecules
of that type. Figure 2 shows the correspondence between
a signaling network and a signaling Petri net model.

The signaling Petri net simulator models signal flow as the
pattern of token accumulation and dissipation within
proteins over time in the Petri net. Through transition fir-
ings, the source can influence the marking of (the number
of tokens assigned to) the target, modeling the way that
signals propagate through protein interactions in cellular
signaling networks.

In order to overcome the issue of modeling reaction rates
in the network, signaling dynamics are simulated by exe-
cuting the signaling Petri net (SPN) for a set number of
steps (called a run) multiple times, each time beginning at
the same initial marking. For each run, the individual sig-
naling rates are simulated via generation of random
orders of transition firings (interaction occurrences).
When the results of a large enough number of runs are
averaged together, we find that the change in distribution

of tokens in the network correlate with experimentally
measured changes in the activity-levels of individual pro-
teins in the underlying signaling network. In essence, the
tokenized activity-levels computed by our method should
be taken as abstract quantities whose changes over time
correlate to changes that occur in the amounts of active
proteins present in the cell. It is worth noting that some of
the most widely used experimental techniques for protein
quantification – western blots and microarrays – also
yield results that are treated as indications, but not exact
measurements, of protein activity-levels within the cell.
Thus in some respects, the predictions returned by our
SPN-based simulator can be interpreted like the results of
a western blot or microarray experiment looking at
changes relative to "control".

During a simulation run, the simulator imposes a strict
ordering on transition firing such that it creates a two-time
scale simulation. The smaller time scale is discretized as
the firing of a single transition. This unit is referred to as
the firing time scale. Firing steps are nested within a larger
time scale, called time blocks, within which each transition
is fired exactly once. The values returned by the simulator
are the averaged token-counts for each protein at each
time-block (across all runs).

Figure 3 provides a small example of a simulation run
whose duration is two time blocks. As mentioned previ-
ously, within a given time block, each transition fires
exactly once. Thus, in the table (Figure 3(c)), there is one
column for each transition in each time block. The order-
ing of the transitions is shuffled in each time block in
order to sample a different set of signaling rates within the
networks.

In the first time block, transition t2 fires first: it reads 2
tokens out of Grb2 and places 2 additional tokens in Ras.
Transition t1 fires second, reading 3 tokens out of Grb2.
Transition t3 is evaluated last. The final marking for the
network, highlighted as the red column in block 1 is used
by the simulator as the marking for that block when aver-
aging across runs.

At the conclusion of block 2, compare the values high-
lighted in red in the Initial column and at the end of both
blocks. Note how the distribution of tokens have changed
over the course of the simulation. Grb2 has the same
number of tokens, implying that its activity-level has
remained unchanged – this is consistent with the signal-
ing network since no activating or inhibiting edges affect
it in the model. AKTs token-count has risen, consistent
with the fact that it is only activated in the signaling net-
work. Ras's token-count has fallen which is one plausible
behavior of the system since it is activated by Grb2, but
inhibited by AKT.

An example of how tokens move among placesFigure 1
An example of how tokens move among places. In a 
Petri net, quantities of tokens are assigned to places. In (a), 
three tokens are assigned to place pA and zero tokens are 
assigned to place pB. The two places are connected by a tran-
sition, t1. The arcs in and out of t1 indicate the direction in 
which tokens move. When t1 fires, it moves some number of 
tokens from pA and puts them in pB. In (b), transition t1 has 
fired and moved two tokens from pA to pB.
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Implementation
PathwayOracle is written in Python [18]. The user experi-
ence is oriented around visualization of and interaction
with three main types of data: the signaling network,
markings, and paths. At any given time, one signaling net-
work is open, which is the basis for all analyses. Any sim-
ulation or concentration data is loaded and inspected as
markings. Currently all static analyses revolve around
paths, which are the third data type. In the following sub-
sections, these individual data types and the user inter-
faces to them are discussed in more detail.

The Signaling Network Model
While the implementation of our methods use the signal-
ing Petri net model discussed in an earlier section of this
paper, we provide a simpler and more convenient repre-
sentation of the network to the user which omits the inter-
nal topology of the transitions and allows the user to
specify interactions simply as either activating or inhibit-

ing. Thus, for the remainder of this paper we use the fol-
lowing definition of the signaling network which is
consistent with the experience the user will have when
working with PathwayOracle. The signaling network con-
nectivity is a directed graph G = (V, E) where

• V is the set of nodes, which are signaling proteins and
complexes (hereafter referred to collectively as signaling
nodes) and

• E is the set of edges, which are signaling interactions.
Each edge is of one of two types: u → v for activation and
u  v for inhibition.

Within PathwayOracle, each signaling node has a name,
unique within the network. A signaling edge has no prop-
erties besides its type and is only defined by its source and
target.

An example signaling network and its corresponding Petri netFigure 2
An example signaling network and its corresponding Petri net. An example signaling network (a) and its correspond-
ing Petri net (b). Each signaling protein in the network, A, B, and C, is designated as a place pA, pB, and pC. A signaling interaction 
becomes a transition node and its input and output arcs. Note that the connectivity for an activating edge differs from that of 
an inhibitory edge.
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An example signaling Petri net simulationFigure 3
An example signaling Petri net simulation. (a) is the signaling network being simulated. (b) is the signaling Petri net that 
models that signaling Petri net. The table in (c) provides the markings for the Petri net over the course of a simulation run 
whose duration is two time blocks. The proteins are given the initial marking shown in the Initial column. Each subsequent col-
umn corresponds to a single time step during which one transition fired, producing a new marking of the network. The bold 
number in each column indicates which protein's marking was affected by the transition that fired in that time step. The red 
columns – always the last time step in the block – highlight the markings whose values would be averaged and used as part of 
the final result. These red columns are the sources of the markings that PathwayOracle reports.
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In order to facilitate the rapid construction of such signal-
ing network models, we devised a file format called the
Connectivity Format. It is capable of expressing both gen-
eral networks as well as paths. When representing a net-
work in the format, as shown in the example in Figure
4(b), one signaling interaction is written on a line with
the format

u -> v or u - | v

where u is the name of the source signaling node and v is
the name of the target signaling node. Each node is taken
to represent the active form of the protein it is named for.
Thus, from the example above, the interaction PI-3-
K→AKT means that the active form of PI-3-K increases the
activity-level of AKT whereas the interaction PTENAKT
means that the active form of PTEN decreases the activity-
level of AKT. While these types of unparameterized rela-
tionships can be represented in SBML, SBML was designed
for encoding much more information than just connectiv-
ity [19]. As a result, we deemed it appropriate to design a
more concise format for our purposes. However, in a
future release, PathwayOracle will support loading and
saving in the SBML format.

At a given point in time, only one signaling network can
be open in PathwayOracle. The main window displays a

graphical representation of the network. The layout of the
network can be modified by dragging nodes or by shift-
clicking on edges to create, remove, or move waypoints.
These layouts can be saved with the network and loaded
again.

Signaling Network Markings
In signaling networks, signal flow is measured and quan-
tified as the fluctuation of concentrations of various forms
of signaling proteins over time. In PathwayOracle, we
model concentrations using the concept of a network
marking, which was adapted from Petri nets in which it
was first used [9].

Markings
In PathwayOracle, a marking, μ is an assignment of real
values to the nodes of a signaling network such that every
signaling node receives a value. Earlier, the concept of a
marking was introduced as the assignment of tokens to
protein places in the signaling Petri net. In a signaling
Petri net, tokens are discrete. In PathwayOracle, a marking
is an average of the markings from many independent
simulation runs, which gives rise to the real, rather than
integral values, assigned by the marking.

As discussed earlier, the value of the marking of a signal-
ing node, μ(v), can be interpreted as an estimate of the

An example of a Network in the Connectivity FormatFigure 4
An example of a Network in the Connectivity Format. (a) A graphical representation of a signaling network's connec-
tivity. (b) The signaling network in (a) written in the Network Connectivity Format.
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concentration or change in concentration of the active
form of the signaling protein v (we call the amount of the
active form of the signaling protein its activity-level). The
two different versions of the simulator generate markings
with these different meanings. The first simulator predicts
the signal flow due to an experimental condition and gen-
erates markings whose values are taken to represent the
actual activity-level of signaling protein present over the
assumed basal levels. The second version of the simulator
predicts the difference in signaling due to changing exper-
imental conditions. The values assigned by markings pro-
duced by this simulator correspond to the change in the
activity-level of the protein induced by the change in
experimental condition. This will be discussed further in
the Results and Discussion section.

Marking Series
In order to model signal flow, a single marking is not
enough since it only provides a single snapshot of concen-
trations throughout the network. A marking series is an
sequence of markings, (μ1, μ2,..., μT) in which the marking
μt is a snapshot of the concentration distribution at time
step t. Thus, it is possible to see how the activity-level of
protein v changed by plotting the values μ1(v), μ2(v),...,
μT(v). PathwayOracle provides the ability to do this.

PathwayOracle supports loading a marking series dataset
from comma-separated value (.csv) files. As shown in Figure
5(a), the file has a header row which specifies, for each
column, the name of the molecule whose concentration
values will appear in that column. Each subsequent row
contains the value assignments for a marking: the second
row contains the marking for time step 1, the third row
contains the marking for time step 2, and so on.

Marking Groups
In many experiments, the activity-level of various proteins
are sampled at different time points and under different

experimental conditions. Since the marking series is not
able to represent changes due to different experimental
conditions, we introduced the more general concept of a
marking group in which each marking can correspond to
an arbitrary activity-level distribution. Each marking is
given a descriptive label that can be used to identify the
conditions under which the activity-level was sampled.

Like the marking series, a marking group is loaded from a
.csv file. However, unlike the marking series in which each
row corresponds to a time step, in the marking group,
each row corresponds to an independent marking (exper-
imental condition). As shown in Figure 5(b), the first row
is a header row specifying the molecule names for each
column, the first column specifies the names for the indi-
vidual markings (experimental conditions).

The Marking Manager
PathwayOracle includes a specific user-interface, the Mark-
ing Manager, designed to manage the three different types
of markings. The Marking Manager provides a central
interface within which it is possible to view all markings
loaded and inspect them in ways that are relevant to their
type (marking, marking series, or marking group). The
specific ways in which markings can be inspected will be
discussed further in the Results section.

Signaling Paths
The current structural analysis capabilities available in
PathwayOracle allow inspection of signaling paths within
the network. A signaling path p is a sequence of nodes, (v1,
v2,..., vk) where vi ∈ V ∀1 ≤ i ≤ k, and (vi, vi + 1) ∈ E ∀1 ≤ i
<k. In this case, we say that node v1 is the source of path
p, and node vk is the target of p. Given a path, a variety of
statistics may be of interest to the user. Additionally, it
may be useful to view the path within the larger network.
PathwayOracle provides these capabilites which will be
discussed in the Results and Discussion section.

Examples of marking series and group file formatsFigure 5
Examples of marking series and group file formats. (a) An example marking series dataset in the comma-separated value 
file format. The first row specifies the signaling proteins whose concentrations were measured. Each row thereafter specifies 
the concentration for a given time step: row i specifies the concentrations for each signaling protein at time step i - 1. (b) An 
example marking group dataset in the comma-separated value file format. The first row specifies the signaling proteins whose 
concentrations were measured. The first column specifies the names for each marking in the group dataset. The numbers in 
each row specify the concentration measured for each signaling protein in that marking.
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Sets of paths can be saved to a file and loaded back into a
session. Like networks, paths are also stored in the Con-
nectivity Format. When representing a set of paths, as
shown in Figure 6, the full node names and the edge types
are written so that all path information is directly availa-
ble within the file itself. One line contains one path.

Results
PathwayOracle provides a variety of tools for analyzing the
structural and dynamic properties of a signaling network
based on its connectivity. While its main differentiating
feature is the ability to predict signal flow through a net-
work using only the connectivity of the signaling network,
PathwayOracle also provides the ability to visualize the
network, analyze its connectivity, and inspect concentra-
tion-based experimental data.

With the exception of the signaling Petri net simulator,
PathwayOracle's features can be found in various combi-
nations in other tools. Figure 7 provides a matrix of the
features and capabilities of several tools most commonly-
used for signaling network analysis. While other tools
support a variety of simulation techniques, PathwayOra-
cle, alone, provides non-parameterized simulation capa-
bilities. It is worth noting that the commercial software
package CellIllustrator [20] provides Petri net-based sim-
ulation capabilities. The difference between CellIllustrator
and PathwayOracle Petri net approaches is the extensive
set of kinetic parameters required by CellIllustrator in
order to simulate a biological system. In this regard,
hybrid functional Petri nets, the underlying technology
used by CellIllustrator, are not significantly different from
ODEs.

Another important distinguishing characteristic of Path-
wayOracle is the combination of features that it supports.
Biological network analysis is a multi-faceted process that
may involve structural, dynamic, and data analysis in par-
allel. Whereas other tools tend to focus on one or two of
these general areas of analysis, we considered it important
for PathwayOracle to incorporate all three in order to pro-

vide the researcher a single environment in which all their
analysis could be done. In future releases we plan to
increase PathwayOracle's support for all three of these
directions of investigation: structural, dynamic, and data
analysis.

In the remainder of this section, we discuss the features
currently available in PathwayOracle.

Network Visualization
As in many other computational analysis tools for signal-
ing networks (e.g., [20,21]), an interactive graphical rep-
resentation of the signaling network connectivity is at the
center of the PathwayOracle interface. The main window
provides a visualization of the signaling network connec-
tivity. This visualization interface allows the user to edit
the layout of the network by clicking on and dragging
nodes and by shift-clicking on edges to create, remove, or
move waypoints. Waypoints are points that lie on an
edge. Holding down shift will display all edge waypoints.
Existing waypoints can be dragged to change the path that
an edge follows. Right-clicking on a waypoint will remove
it. Left-clicking on a straight segment of the edge will cre-
ate a new waypoint.

The network visualization also provides a view onto
which path and experimental data analysis may be
mapped. As will be discussed in subsequent sections,
selected paths may be highlighted in this view and mark-
ings from experiments can set the colorings of individual
nodes.

Network Signal Flow Simulation
The main feature differentiating PathwayOracle from other
tools, such as CellDesigner [20] and COPASI [22], is its
ability to simulate signal flow using an unparameterized
signaling network model. Simulations can be performed
in two different ways. In the first (Single Simulation), the
simulator predicts the signal flow through the network for
a specific experimental condition. In the second (Differen-
tial Simulation), the simulator predicts the difference in

An example of a Path in the Connectivity FormatFigure 6
An example of a Path in the Connectivity Format. (a) A graphical representation of two signaling paths. (b) The signal-
ing paths in (a) represented in the Connectivity Format. Each line corresponds to a single signaling path.
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signal flow due to two different experimental conditions
on the same network. These simulation methods them-
selves are described in [13]. Here we focus on how simu-
lations are configured, run, and analyzed.

Whereas the consensus networks typically represent the
connectivity in normal cells, many experiments are con-
ducted on abnormal cells in which oncogenic mutations,
gene knockous, and pharmacological inhibitors have
altered the behavior of various signaling nodes in the net-
work. In PathwayOracle users can model these cell- and
experiment-specific conditions by specifying each signal-
ing node as either High, Low, or Free. The High state mod-
els any condition under which a protein's activity-level is
held high for the duration of the experiment. This may be
due to external stimulation or a known mutation in the
protein that makes it constitutively active, for example.
Similarly, a Low state models any phenomenon that forces
a protein to have a persistently suppressed activity-level.
This may be due to mutations that render the protein inac-
tive, gene knockouts, or pharmacological inhibitors that
force the activity-level of the protein low. In general, most
signaling nodes will be Free, which means that their activ-
ity-level is unconstrained throughout the simulation.
Only those nodes designated as High or Low will have
their activity-level fixed for the duration of the simulation.

In order for a protein to be held high during the simula-
tion, it is necessary to indicate the initial activity-level that
the protein will be elevated to. This is done by specifying
the number of tokens that the protein will receive. Since a
protein with a High state cannot be inhibited (even if
inhibitory edges target it in the actual network), the pro-

tein's activity level will never fall below this initial value.
The initial value for a High protein is indicated by placing
it in parentheses next to the protein's name, as shown in
Figure 8. Two other parameters that must be specified for
a simulation are:

• the number of simulation runs to perform and

• the number of time blocks

The number of runs sets the number of independent sim-
ulations whose time block markings are averaged together
to yield the overall simulation markings. In general, using
more runs is a tradeoff between reliability of the results
and simulation speed. In practice, the number of runs
needed is dependent on the signaling network model and
should be selected by observing the reproducability of the
simulation results. An appropriate number of iterations
will be large enough so that for a given experimental con-
dition, the results are very similar across multiple simula-
tions.

The time block, as discussed earlier, is a fundamental unit
of time in the simulator. The appropriate number of time
blocks for which to simulate will vary depending on the
size of the signaling network and the scale of the network
behavior of interest. Generally it should be selected by
running simulations for a variety of time block values and
determining which yields the most biologically reasona-
ble activity-level changes for a known protein. While this
is a manual process in the current version of PathwayOra-
cle, we are investigating automated methods for estimat-

A comparison of features supported by tools commonly used for signaling network analysisFigure 7
A comparison of features supported by tools commonly used for signaling network analysis. The table shows the 
features and analytical capabilities supported by different tools commonly used for the analysis of signaling networks. Tools 
included in the comparison are: CellDesigner [20], CellIllustrator [24], CellNetAnalyze [25], COPASI [22], Cytoscape [21], the 
System Biology Toolkit for Matlab [26], and PathwayOracle.
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The tokenized simulator user interfaceFigure 8
The tokenized simulator user interface. (a) The setup window for the tokenized simulator. The simulation is being con-
figured to have two High nodes, EGF and LKB-auto. EGF will be initialized with a token-count of 10, LKB-auto with a token-
count of 3. The token-count of AMPK will be zero for the duration of the simulation. (b) The setup window for the differential 
simulator. Two different scenarios are being compared through simulation: different token assignments are being tried with 
EGF and LKB-auto, with and without AMPK being fixed low. (c) The plot window for the marking series generated by a simu-
lation. Observe that the signaling nodes whose activity-levels are plotted correspond to those selected in the checklist directly 
to the left of the plot.
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ing the number of time blocks by training against
experimental time series data.

In PathwayOracle, the setup window for the Single Simula-
tion (see Figure 8(a)) prompts the user for a single experi-
mental condition. The setup window for the Differential
Simulation (see Figure 8(b)) prompts the user for two
experimental conditions. Both simulators produce a
marking series. The tokenized simulation marking series
corresponds to the activity-level time series predicted for
the specified experimental condition. The differential sim-
ulation marking series corresponds to the change in activ-
ity-levels over time produced by switching from
experimental condition 2 to experimental condition 1.
The marking series produced by a simulation can be
accessed through the Marking Manager. Choosing to
inspect a marking series will present the user with a blank
plot. By selecting signaling nodes, the plot is populated by
the marking series values for individual nodes over time,
as shown in Figure 8(c).

While this plot generation capability exists in many other
dynamic simulation tools, the simplicity of the model
used for simulation and the speed with which a simula-
tion runs set PathwayOracle apart from other tools which
require specification of the numerical values of kinetic
parameters for each reaction in the network of interest
(e.g., [20,22]). PathwayOracle, because of its novel
approach, does not have such requirements. It is worth
noting, however, where PathwayOracle provides approxi-
mations of signal flow, an ODE generates the actual con-
centration changes using extremely detailed and accurate
models of the underlying biochemistry. The simulators in
PathwayOracle provide an attractive, time- and resource-
saving alternative this more exhaustively parameterized
techniques. In particular, PathwayOracle's features will
benefit researchers interested in quickly assessing charac-
teristics of signal flow in their network.

For some networks, biologists will have partial knowledge
of kinetic parameters or of other biological details which
the signaling Petri net model does not, at present, con-
sider. By integrating this knowledge into the simulator, it
may be possible to improve the simulator's predictions.
We identify this as a direction for future investigation. As
the signaling Petri net simulator is extended, these new
capabilities will be incorporated in future releases of Path-
wayOracle.

Signaling Path Analysis
The use of the simulators and plotting tools allows the
user to observe trends in the activity-level of individual
signaling nodes over time. Since the activity-level of a
node is determined by the activity-level of other nodes in
the network, the activity-level time series of a node may be

explained by changes in the activity-level history of nodes
upstream of it. In order to investigate such indirect inter-
actions, it is useful to enumerate all the paths leading
from a specific protein to the protein of interest. Pathway-
Oracle provides this capability. Additionally, it provides
various statistics on the set of paths linking two signaling
nodes as well as a classification of the effect of each path
as either coherent or incoherent (e.g. [23]). A coherent path
is a directed series of interactions that leads from x to y
such that an increase in the activity-level of x causes an
increase in the activity of y and a decrease in the activity-
level of x causes a decrease in the activity-level of y. An
incoherent path is a directed series of interactions leading
from x to y such that an increase in the activity-level of x
causes a decrease in the activity-level of y and a decrease in
the activity-level of x causes a increase in the activity-level
of y. It is possible to classify a path p as either coherent or
incoherent by counting the number of inhibitory edges
along p. A path with an even number of inhibitory edges is
coherent; a path with an odd number of inhibitory edges is inco-
herent [5]. This logic is assumed in PathwayOracle. All sim-
ple paths (paths without loops) connecting two specified
signaling nodes are enumerated by an exhaustive depth-
first search. These paths then are classified as either coher-
ent or incoherent, and presented to the user for further
inspection in a window similar to the one shown in Figure
9(a). When a path is selected in the results window, it is
highlighted in the main window, allowing the user to
evaluate it within the context of the complete network
(see Figure 9(b)).

Experimental Data Analysis
A model of the connectivity of a signaling network makes
it possible to identify components of the model that are
inconsistent with experimental data or visa versa. Path-
wayOracle enables this kind of analysis by allowing users
to load experimental concentration data and visualize it
both as a heatmap (see Figure 10(a)) or superimposed on
the network view (see Figure 10(b)). Several other soft-
ware tools provide similar capabilities (e.g., [21]). In Path-
wayOracle, experimental concentration data is loaded as a
marking group in which a single marking corresponds to
a condition for which concentrations were sampled. Fig-
ure 10(a) shows a marking group with 24 conditions
(rows). The concentration of seven signaling proteins
were sampled for each condition. This is the heatmap
view for the marking group. When a specific marking in
the group is selected, the colors for that marking are
applied to the network view. This is particularly useful
when assessing whether the experimental data is consist-
ent with the interactions in the model. In Figure 10, the
MDA231-B-DMSO2 marking has been superimposed on
the network. We can see that RSK has a relatively low con-
centration despite the high concentration of MAPK. Given
that, in the model, RSK is activated by MAPK, this combi-
Page 11 of 14
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nation of activity-levels seems unlikely to occur. Such an
inconsistency suggests that there may be other signaling
interactions contributing to the overall activity-level of
RSK. Such an insight can help a researcher quickly identify
areas where the model or experimental results need to be
re-evaluated or improved.

Future Directions
Our goal is to develop PathwayOracle into an integrated
and expansive suite of tools that allow the biologist to
extract as much information as possible from models of
signaling network connectivity and experimental data
relating to those models. We consider future directions for
PathwayOracle to fall into several categories: network con-
struction, network augmentation, experimental and com-
putational analysis integration, and architecture.

One of the benefits of working with connectivity models
of signaling networks is the abundance of databases and
other online resources that publish connectivity-level
data. Future versions of PathwayOracle will have support
for querying such databases for connectivity components
and, ultimately, for automated connectivity construction
based on a set of signaling nodes specified by the user.

Analysis of network connectivity and topology is increas-
ingly relevant to biological research. We intend to expand
PathwayOracle's structural analysis features to include the
ability to search for and identify motifs in the signaling
networks.

Network connectivity can also be inferred from experi-
mental data, which provides another direction for
research and development. By using experimental results
to identify inconsistencies between experimental results
and the current network model, it may be possible for
PathwayOracle to augment the network with new connec-
tivity based on hints supplied by experimental results. At
present only experimental concentration data is sup-
ported. However, as experiments produce more informa-
tion beyond concentration profiles of signaling nodes, we
plan to expand the experimental data that PathwayOracle
can load, visualize, and use as part of network analyses.

Experimental results can also provide computational
analysis methods information that can improve their final
predictions or decompositions. Taking advantage of the
additional, potentially obfuscated, information present in
experimental results to improve the results returned by
computational tools is a major goal for future versions of
PathwayOracle.

The path interrogation user interfaceFigure 9
The path interrogation user interface. (a) The result window enumerating the set of all paths between Ras and mTOR/rap-
tor. (b) The main network view showing the selected path highlighted.
Page 12 of 14
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A longer term direction for PathwayOracle is the integra-
tion of transcriptional and metabolic network analysis. In
the biological systems of interest, the behavior of any one
of these networks is dependent on the characteristics of
the other two. As a result, developing a complete under-
standing of signaling, transcriptional regulation, or
metabolism depends in part on integrating knowledge
from the others. Finally, an ongoing priority in the design
of PathwayOracle is its role as an open platform for the
development and deployment of new analytical capabili-
ties by other groups. Currently PathwayOracle employes a
modular architecture that facilitates easy integration of
new functionality. However, in future releases we plan to
expose a plugin interface which will make it easier to
developers and researchers to develop and deploy tools
within PathwayOracle.

Conclusion
PathwayOracle is an integrated software environment in
which biologists may conduct structural and dynamic
analysis of signaling networks of interest. PathwayOracle is
distinguished from other tools in the field of systems biol-
ogy by its ability to predict the signal flow through a net-
work using a simplified, connectivity-based model of the
signaling network. Simulations are fast and, based on a
published study, predictors of signal propagation. This
novel simulation capability, combined with support for
structural analysis of connectivity between pairs of pro-
teins and for analysis of certain kinds of experimental data
make PathwayOracle a powerful asset in the experimental-
ist's endeavor to gain a more complete understanding of
the cellular signaling network.

The marking group user interfaceFigure 10
The marking group user interface. (a) The heat map visualization of a marking group. The selected marking, MDA231-B-
DMSO1, is highlighted in blue. (b) The color distribution for the selected marking in the group is applied to the network view 
in the main window. Note that signaling nodes for which values were not given are not assigned a color on the valid red to 
green spectrum.
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Abstract

Extracting network-based functional relationships within genomic datasets is an important challenge in the computational
analysis of large-scale data. Although many methods, both public and commercial, have been developed, the problem of
identifying networks of interactions that are most relevant to the given input data still remains an open issue. Here, we have
leveraged the method of random walks on graphs as a powerful platform for scoring network components based on
simultaneous assessment of the experimental data as well as local network connectivity. Using this method, NetWalk, we
can calculate distribution of Edge Flux values associated with each interaction in the network, which reflects the relevance
of interactions based on the experimental data. We show that network-based analyses of genomic data are simpler and
more accurate using NetWalk than with some of the currently employed methods. We also present NetWalk analysis of
microarray gene expression data from MCF7 cells exposed to different doses of doxorubicin, which reveals a switch-like
pattern in the p53 regulated network in cell cycle arrest and apoptosis. Our analyses demonstrate the use of NetWalk as a
valuable tool in generating high-confidence hypotheses from high-content genomic data.
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Introduction

An important challenge in the analyses of high throughput

datasets is integration of the data with prior knowledge

interactions of the measured molecules for the retrieval of most

relevant biomolecular networks [1–7]. This approach facilitates

interpretation of the data within the context of known functional

interactions between biological molecules and subsequently leads

to high-confidence hypothesis generation. Typically, this proce-

dure would entail identification of genes with highest or lowest

data values, which is then followed by identification of associated

networks. However, retrieval of most relevant biological networks/

pathways associated with the upper or lower end of the data

distribution is not a trivial task, mainly because members of a

biological pathway do not usually have similar data values (e.g.

gene expression change), which necessitates the use of various

computational algorithms for finding such networks of genes

[1,2,4,5,8–11]. One class of methods for finding relevant networks

utilize optimization procedures for finding highest-scoring subnet-

works/pathways of genes based on the data values of genes [2,8].

Although this approach is likely to result in highly relevant

networks, it is computationally expensive and inefficient, and is

therefore not suitable for routine analyses of functional genomics

data in the lab. The most popular of the existing methods of

extraction of relevant networks from genomic data, however,

usually involve a network building strategy using a pre-defined

focus gene set, which is typically a set of genes with most significant

data values (e.g. most over-expressed genes) [1,7]. The network is

built by ‘‘filling in’’ other nodes from the network either based on

the enrichment of interactions for the focus set (IPA -Ingenuity

Pathway Analysis) [1], or based on the analysis of shortest paths

between the focus genes (MetaCore) [7,12]. Both methods aim at

identifying genes in the network that are most central to

connecting the focus genes to each other. Problems associated

with these methods have been outlined previously [7]. However

perhaps most importantly, the central genes identified by these

methods may have incoherent data values with the focus genes

(e.g. the central genes may have reduced expression while the

focus genes may have increased expression), as data values of

nodes are not accounted for during the network construction

process using the seed gene list. This may result in uninformative

networks that are not representative of the networks most

significantly represented in the genomic data (see Results). In

addition, these methods do not account for genes with more subtle

data values that collectively may be more important than those

with more obvious data values [13]. Although powerful data

analysis methods for finding sets of genes with significant, albeit

subtle, expression changes have been developed (e.g. GSEA [13],

Molecular concept maps[14], GenMAPP[15]), such an approach

has not been incorporated into methods for extracting interaction

networks that are most highlighted by the data.

In order to overcome these problems, we have employed the

method of random walks in graphs for scoring the relevance of

PLoS Computational Biology | www.ploscompbiol.org 1 August 2010 | Volume 6 | Issue 8 | e1000889



interactions in the network to the data. The method of random

walks has been well-established for structural analyses of networks,

as it can fully account for local as well as global topological

structure within the network [16,17] and it is very useful for

identifying most important/central nodes [16–18]. Here, instead

of working with a pre-defined set of focus genes, we overlay the

entire data distribution onto the network, and bias the random

walk probabilities based on the data values associated with nodes.

This method, NetWalk, generates a distribution of Edge Flux

values for each interaction in the network, which then can be used

for dynamical network building or further statistical analyses.

Here, we describe the concept of NetWalk, demonstrate its

usefulness in extracting relevant networks compared to Ingenuity

Pathway Analysis, and show the use of NetWalk results in

comparative analyses of highlighted networks between different

conditions.

We tested NetWalk on experimentally derived genomic data

from breast cancer cells treated with different concentrations of

doxorubicin, a clinically used chemotherapeutic agent. Using

NetWalk, we identify several previously unreported network

processes involved in doxorubicin-induced cell death. From these

studies we propose that NetWalk is a valuable network based

analysis tool that integrates biological high throughput data with

prior knowledge networks to define sub-networks of genes that are

modulated in a biologically meaningful way. Use of NetWalk will

greatly facilitate analysis of genomic data.

Methods

Calculating node probabilities using data
Integration of genomic data represented by a vector w with the

network data of interactions between genes (nodes) is performed

by representing each interaction (edge) in the network in the form

of a transition probability based on the data values (e.g. mRNA

expression change, phenotype score from a genetic screen) of

nodes within the immediate neighborhood:

pij~
wj

Sk[Ni
wk

ð1Þ

where pij is the transition probability from node i to node j, wj is the

experimental value for node j, and Ni is the set of immediate

downstream neighbors (undirected edges are considered bidirec-

tional) of node i. If there are no downstream nodes of the node i

(|Ni| = 0), pij is set to pij = 1/|n| for all j [ n [ n, where n is the set

of all nodes in the network. The relevance score of each node in

the network is defined by the probability of its visitation by the

random walker, which is a function of both the local network

connectivity as well the data values of nodes. So at any step k of

this ‘‘random walk’’ process, the probability of a node being visited

by the random walker is

gk
i ~Sj[ngk{1

j pji ð2Þ

where gk
i is the probability of node i at step k, pji is the transition

probability from node j to node i and N is the set of interacting

neighbors of node i. This can be represented in a matrix form

gk~gk{1:P ð3Þ

where gk is the vector of probability values for all nodes in the

network at step k, and P is the transition probability matrix of the

network. Obviously, since a ‘‘walk’’ can only be performed over

adjacent nodes, pij.0 only if nodes i and j directly interact. The

expression above can also be written as

gk~g0:Pk ð4Þ

where Pk is the transition probability matrix raised to the power k,

and g0 is the initial probability distribution over nodes (all 1/|n|).

By the Perron-Frobenius theorem for stochastic matrices, as

k??k?? (infinite random walk), the expression above

converges to

g~g:P ð5Þ

where g is the left eigenvector of P associated with eigenvalue 1

and contains the final visitation probability values of nodes.

The final visitation probabilities of nodes depend on their data

values, data values of their neighbors, as well as the local network

connectivity. In order to further bias the random walk towards the

input data values, we assigned a small probability q that the

random walker will return to its starting node. Therefore, the

expression for random walk with restart is given by

g~g 1{qð ÞPz
1

DnD
q|1T

� �
ð6Þ

where q is a vector of all q of length |n| and 1 is a vector of all 1:

so that the restart probability is uniform among all nodes.

However, we bias the restart probabilities to the data values of

nodes, so that the random walker is more likely to return to its

initial node if the data value of that node is high.

g~g 1{qð ÞPz
1

Sk[nwk

q|wT

� �
ð7Þ

Author Summary

Analysis of high-content genomic data within the context
of known networks of interactions of genes can lead to a
better understanding of the underlying biological pro-
cesses. However, finding the networks of interactions that
are most relevant to the given data is a challenging task.
We present a random walk-based algorithm, NetWalk,
which integrates genomic data with networks of interac-
tions between genes to score the relevance of each
interaction based on both the data values of the genes as
well as their local network connectivity. This results in a
distribution of Edge Flux values, which can be used for
dynamic reconstruction of user-defined networks. Edge
Flux values can be further subjected to statistical analyses
such as clustering, allowing for direct numerical compar-
isons of context-specific networks between different
conditions. To test NetWalk performance, we carried out
microarray gene expression analysis of MCF7 cells subject-
ed to lethal and sublethal doses of a DNA damaging agent.
We compared NetWalk to other network-based analysis
methods and found that NetWalk was superior in
identifying coherently altered sub-networks from the
genomic data. Using NetWalk, we further identified p53-
regulated networks that are differentially involved in cell
cycle arrest and apoptosis, which we experimentally
tested.

Network-Based Data Analyses with NetWalk
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In this way, the probability that the random walker will restart at

another node i is directly proportional on the data value of node i,

thereby even more biasing the process of random walk to the

biological data.

Calculating node probabilities for transcription factors
In the case of transcription factor - target gene interactions,

these were reversed in the network so that the node values of target

genes would contribute to the probabilities of the transcription

factors, rather than the other way around. This is because the data

values of target genes (i.e. mRNA expression change) are more

informative of identifying regulation by transcription factors.

Calculating edge flux values
To find networks of interactions between genes represented in

the data, we scored each interaction in the network by

eij~giPij ð8Þ

where eij is the flux through edge ij and represents the score of

importance of the interaction based on the data.

Controlling for topological bias in the network
The node visitation frequencies in a random walk directly reflect

the relative centralities of nodes in the network, and therefore are

highly biased towards the local network topology. Although

biasing the random walk to data values skews the visitation

frequencies towards the supplied data values, there is still a

significantly high correlation with node connectivity values (Figure

S1), which suggests that the random walk process is highly biased

to the highly connected hubs in the network. Therefore, it is

important to control for topological bias in the network that stems

either from its scale-free nature or the historical bias of highly

studied genes. In order to control for topological biases in the

network, we also calculated background visitation frequencies

gr~gr 1{qð ÞPrz
1

n
q|1T

� �
ð9Þ

which is the same expression as in equation (7), with the exception

that er
�

ij~gr
�

iPr
�

ij . Pr is a transition probability matrix formed

by letting wi = 1 for all i. Since gr is calculated without considering

the data values of genes, it contains all the topological bias in the

network. Therefore, to obtain relative visitation frequencies of

genes (g9), we normalize values in g by those in gr,

g0i~
gi

gr
�

i

ð10Þ

Relative visitation frequency values in g9 have minimal correlation

with node centralities, and have a high correlation with the

supplied gene expression measurements (Figure S2), which

indicates that relative visitation frequencies of nodes are highly

biased towards the data.

Normalization of edge flux values is done by first calculating

er
�

ij~gr
�

iPr
�

ij ð11Þ

where er is the edge score distribution vector calculated by letting

wi = 1 for all i. Then, we normalize the data-biased edge flux

values to er to obtain normalized Edge Flux of interaction ij

EFij

� �
EFij

�

EFij~ log
eij

er
�

ij

0
@

1
A ð12Þ

which gives the final normalized score distribution of edges, which

reflects edge fluxes of nodes relative to what would be expected by

topology alone in the given network.

Data format and missing values
Because of the nature of random walks described above, the

input values must be positive, possibly representing ratio of a test

versus control sample (e.g. ratio of mRNA expression levels of

treated to untreated samples). Missing values in the network are

then assigned a value of 1, which represents a no change case in ratio

values. Accordingly, the values of s are centered around 0, with

higher values meaning higher probability relative to what would

be expected by chance in the given network (i.e. networks of high

data value nodes, e.g. increased gene expression), and lower values

meaning lower visitation probability (i.e. networks with low data

values, e.g. reduced gene expression) (see below).

Effect of data distribution on Edge Flux values
In order to prevent disproportionate skewing of the node

probabilities with extreme outliers in the data, the input data is

normalized so that all w.k0.999 are assigned k0.999, where k0.999 is

the 99.9th percentile value of w. Similarly, all w,k0.001 are

assigned k0.001. With this procedure, the final normalized visitation

frequencies of nodes are highly robust to differences in data

distributions and ranges (see Figure S3).

Network construction
We compiled protein-protein interactions from online databases

HPRD [19] BIND [20], HomoMINT [21], Gene [22] and IntAct

[23]. For directed interactions, we compiled signaling interactions

from KEGG [24], BioCarta (http://pid.nci.nih.gov/) and

TRANSPATH [25], as well as through manual curation of the

undirected interactions based on published literature. Transcrip-

tion factor-target interactions were obtained from ORegAnno [26]

and TRANSFAC [27] databases. This resulted in a network of

10,473 genes connected by ,65,000 interactions.

In network-based analyses of genomic data, the analyses and

therefore resultant hypotheses are limited by the gene coverage of

the network. Therefore, it is crucial that the interaction network

has as much gene coverage as possible. Since our main goal of

network-based analyses is identification of relevant biological

processes, the interactions represented in the network need not be

direct physical interactions. For example, a concordant increase in

the expression of genes involved in glucose metabolism will not be

captured in network-based analyses of direct physical interactions,

as metabolic enzymes within the same pathway rarely engage in

direct physical interactions (with the exception of multifunctional

complexes). Therefore, inclusion of indirect functional interactions

in the network may help identify relevant biological processes that

are not captured by direct interactions (see network plots below).

In order to increase the coverage of our network, we added

functional similarity interactions between genes, where an

interaction means that the genes are involved in similar functional

processes, such as a metabolic pathway (e.g. glycolysis) or a specific

enzymatic reaction (e.g. oxidation/reduction). Functional similar-

ity interactions were constructed using Gene Ontology (GO)

annotations [28] as defined in the Entrez Gene database, and also

metabolic pathway annotations in the KEGG database. Any two

genes sharing a metabolic pathway annotation (but not signaling

Network-Based Data Analyses with NetWalk
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pathways as they are already represented in protein-protein

interactions) from KEGG were assigned an interaction. In the case

of GO annotations, two genes were assigned an interaction if the

overlap of their GO annotations was significant compared to the

rest of the genes:

sij~
D
T

k[N Gk D
n

where sij is the significance of overlap between genes i and j; Gk is

the set of genes that have the GO term k; N is the set of GO terms

common to genes i and j, and n is the total number of genes. If

sij,0.001, genes i and j were assigned an interaction.

Our final network contains 14,506 genes connected by 189,901

interactions. Gene coverage of our network of genes in our

doxorubicin dataset is comparable to that in the Ingenuity

Pathway Analysis (13,329 in our network versus 13,880 in

IPA).

Microarray analyses
MCF7 cells were grown in DMEM (Invitrogen) supplemented

with 10% FBS (Gemini) to near confluency and treated with 1 or

10 mM Doxorubicin (Sigma). Cells were collected at 0, 6, 12 and

24 hours post-treatment. Cell lysis and RNA extraction was done

using Mirvana miRNA isolation kit (Ambion) and amplification

using Illumina TotalPrep RNA amplification kit (Ambion). Equal

amount of RNA from each sample was hybridized to Illumina

HT12 BeadChip (Illumina). All procedures were performed

exactly as described in the respective manuals. The experiments

were repeated in triplicate.

Analyses with IPA
Networks in IPA were generated using Core analysis with

indicated data cutoffs for upregulated genes and using direct

interactions with the cutoff for network size to be 70. Highest

scoring 5 networks were merged and exported as text files.

Network plotting
All network plottings were done using the gplot function in the

sna package for R (http://erzuli.ss.uci.edu/R.stuff/).

Western blotting
Cells were treated as indicated and lysed in a sample lysis buffer

(50 mM Hepes, 150 mM NaCl, 1mM EGTA, 10 mM Sodium

Pyrophosphate, pH 7.4, 100 nM NaF, 1.5 mM MgCl2, 10%

glycerol, 1% Triton X-100 plus protease inhibitors; aprotinin,

bestatin, leupeptin, E-64, and pepstatin A). Blotting was done

using antibodies against p53 (Cell Signaling), p21 (Cell Signaling)

and Actin (Sigma). The experiment was done in triplicate.

Apoptosis assays
FACS: Cells were treated as indicated and after 24 hours

trypsinized, fixed with 70% ethanol at 220uC for 10 minutes and

resuspended in Propidium Iodide solution. FACS analysis was

performed in the Flow Cytometry core facility of M.D. Anderson

Cancer Center.

Rhodamine 123 assay: Rhodamine 123 staining was performed

as described [29]. Briefly, cells were treated as indicated and after

24 hours, trypsinized, spun down and resuspended in 10 mM

Rhodamine 123 (Invitrogen) in PBS for 30 minutes. Cells were

washed in PBS and analyzed by FACS for Rhodamine 123

intensity (green).

Figure 1. General concept of NetWalk. An imaginary network with artificial experimental data values is shown (e.g. relative gene expression
values) on the left. Node A was assigned a value of 5, nodes G, H, I, J, K and L were assigned 2, and all the other nodes were assigned 1. A transition
probability matrix P was constructed using the input data values and the network, with transition probabilities between adjacent nodes reflecting
their data values (colors in the matrix reflect transition probabilities P(iRj) according to the color key). Final visitation and flux values reflect the level
of coherence between the experimental data of genes and their relative positioning within the network. Note that node colorings in the network on
the right reflect relative visitation probabilities of nodes, and line colors of edges reflect the flux values according to the same color scale.
doi:10.1371/journal.pcbi.1000889.g001
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Results

Generating networks with NetWalk
Identifying common biological roles of genes whose expression

are altered in a microarray experiment is one of the most

frequently used strategies to understand the underlying biological

processes and derive hypotheses [6,13–15,30]. This strategy is also

implicit in NetWalk (Figure 1), as node visitation frequency values

(hence EF values) calculated by NetWalk are based on 1) data

values of nodes, 2) data values of their network neighbors and 3)

the network connectivity among neighbors. Therefore, a node

with a high data value that interacts with other nodes with high

data values in the network will receive the highest node visitation

and EF scores. Similarly, a node with a low data value that

interacts with other nodes with low data values in the network will

receive the lowest node visitation and EF scores.

In order to test the dependency of NetWalk output on the

provided data, we performed deletions of portions of data and

compared the resultant visitation frequencies to those of the

original dataset. Correlation of node visitation frequencies to those

of the full dataset closely followed the input data, suggesting that

NetWalk output is highly dependent on the supplied data (Figure

S4). However, this may also suggest that NetWalk output is mostly

independent of the network connectivity. In order to test the

dependence of NetWalk output on the network connectivity, we

removed parts of the network and performed NetWalk analysis on

the perturbed networks. The resultant node visitation frequencies

correlate relatively poorly with those of the original network

(Figure S5), indicating that the network connectivity substantially

contributes to node visitation frequency values. We also performed

a similar analysis with random deletions and additions of edges,

rather than nodes, in the network, and found a similar dependence

Figure 2. NetWalk analysis of low and high-dose doxorubicin response in MCF7 cells. A) Apoptosis levels in MCF7 cells after 24 hours of
stimulation with indicated doses of doxorubicin as measured by FACS analysis of DNA content (see Methods). B) FACS analysis of viable cells as
indicated by loss of Rhodamine 123 staining(see Methods). C–D) Plots of interactions with lowest(B) and highest (C) EF values in samples treated with
1 mM doxorubicin for 24 hours relative to control. Nodes are colored according to their gene expression change relative to control according to the
color key. Edge coloring reflects type of interaction, PPI: protein-protein interaction, TF-target: gene regulation, FS: functional similarity. The
distribution plot of all EF values is shows at the bottom.
doi:10.1371/journal.pcbi.1000889.g002
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of the NetWalk output on the network connectivity (Figure S7).

These analyses demonstrate that NetWalk output is highly

dependent on both the supplied data as well as the network

information.

To demonstrate the use of NetWalk in the extraction of relevant

networks out of microarray gene expression data, we studied gene

expression profiles of MCF7 cells subjected to sub-lethal and lethal

doses of doxorubicin. We performed microarray gene expression

analysis of MCF7 cells before and after treatment with 1 or 10 mM

doxorubicin for 6, 12 and 24 hours. In these cells, 1 mM

doxorubicin causes a cell cycle arrest in S-phase, while a 10 mM

dose induces cell death (Figure 2A–B). A NetWalk analysis of the

ratio values (treated/untreated) for 1 mM treatment was per-

formed using q = 0.01 (see Methods). The resulting distribution of

edge flux values, and plots of edges with 100 highest and lowest EF

values can be seen in Figure 2C–D. EF values are strictly biased

towards the data, as the high and low-end networks are entirely

composed of genes with, respectively, increased and reduced

expression levels. In the Figure 2D, interactions in the cluster

made of GLS, GLS2, P4HA2, ODC1 and PRODH genes

(arginine and proline metabolism) have the highest EF scores

due to both their high data values and tight interconnections with

each other. Similarly, in the low-score network in Figure 2C,

interactions in the cluster containing NDC80, CENPK, CBX1,

CENPA and SGOL1 (centriole components) have the lowest EF

scores. Nodes with moderate values that are in close proximity to

other high value nodes within a tightly connected neighborhood

will also get high scores, as is seen with TP53 in Figure 2B.

In order to demonstrate that the p53 network extracted by

NetWalk is not an artifact of highly connected subnetworks, we

performed a NetWalk analysis of baseline expression profile of

MCF7 cells relative to other breast cancer cells as reported by

Neve et al [31]. The most significantly upregulated networks in

MCF7 cells relative to the rest of 53 breast cancer cells are those

involved in the Estrogen Receptor signaling (Figure S6), a well-

characterized dominant pathway in the estrogen receptor positive

MCF7 cells. This analysis shows that NetWalk output does indeed

reflect accurate quantification of highly biologically relevant

networks based on the supplied data.

EF scores are highly coherent with data values
Contrary to the seed-based network building methods, NetWalk

works with the whole data distribution and so does not require

assignment of pre-defined cutoffs or focus gene sets. NetWalk

procedure simply translates the gene-centric data values to

corresponding interaction scores based on the coherence of the

gene values with those in the local network neighborhood as well as

the local interaction pattern in the network. Therefore, the results

can be viewed at any user defined cutoff value for flexible generation

of networks with highly coherent node values. The distribution of

input node values and sample networks with different EF cutoffs

shows that the node values within networks are highly coherent

across a wide range of EF score cutoffs, which allows for high-

confidence hypothesis generation about activated and inactivated

network processes in response to DNA damage (Figure 3A–B). In

comparison, the distribution of data values of nodes in the networks

Figure 3. Comparison of coherence of node values in highest scoring networks. A) Boxplots of gene expression change values (1 mM DOX,
24 hours relative to control) of nodes in networks generated by different cutoffs of EF values, or in networks generated by Ingenuity Pathway
Analysis software using different gene expression value cutoffs for the focus gene set (see Methods). B) Heatmaps showing position of genes in the
networks in A in the whole data distribution. Positions of genes in the respective networks are indicated by a white line. C) A network of nodes
generated by Ingenuity Pathway Analysis software with focus gene set using 1.5 as cutoff. Since original network plots in IPA lack node colorings for
intermediate genes (non-focus genes), we extracted all nodes in the IPA-generated network and re-plotted them using our network, where we
colored all nodes by their gene expression change.
doi:10.1371/journal.pcbi.1000889.g003
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generated by Ingenuity Pathway Analysis, which takes a focus gene

list as input to build relevant networks, includes nodes with

incoherent data values (see Figure 3A–C), which reduces confidence

in the relevance of the generated networks to the data. The network

of 124 genes retrieved by IPA using a cutoff of .1.5 (60 focus genes)

contains many genes with reduced expression values (Figure 3C),

which were included in the network by the virtue of their

connectivities but not data values. Consequently, the resulting

network is not entirely representative of upregulated network

processes in response to doxorubicin. Moreover, none of the

networks identified by IPA contain all the genes involved in

arginine-proline metabolism (compare Figures 2D and 3C) or any

genes involved in the nucleotide metabolism that were retrieved by

NetWalk (see cluster in Figure 2D containing RRM2B, AK1,

POLR2A and NME2; compare with Figure 3C), demonstrating

inability of seed-based methods to identify subnetworks with more

subtle yet coherent gene expression values.

Statistical analyses using NetWalk output to elucidate
p53-mediated response to DNA damage

As stated earlier, an important feature of NetWalk is that the result

is not a single or a collection of static networks, but a whole distribution

of numerical edge scores. In addition to their use for dynamical

network construction of different sizes based on the user preference,

these can be further subjected to standard statistical tests for a more

detailed analysis. The heatmap of interactions with highest and lowest

EF scores in each condition in our microarray dataset is shown in

Figure 4A. As opposed to clustering with traditional heatmaps of gene

expression values where cluster membership of genes is exclusive,

here, a gene can appear in several different clusters but all with

different interactions. So, analysis of expression with EF scores enables

studying specific functions (i.e. interactions) of genes rather than their

individual expression values. The heatmap shows that the activation

and/or inactivation of several networks is specific to low- or high-dose

doxorubicin treatment. The cluster K3, for example, is activated in

response to high-dose doxorubicin, while K4 is more specifically

activated in response low-dose doxorubicin. A plot of interactions in

K3 reveals several metabolic pathways specifically activated in the

high-dose treatment, including glycolysis, acetyl coenzyme A synthesis,

arginine/proline metabolism and the mitochondrial electron transport

chain (Figure 4C). There is also a p53-centered subnetwork containing

several previously identified p53 target genes. The plot of interactions

in K4 shows an extensive p53-centered network composed mostly of

cell cycle regulatory proteins (e.g. CDKN1A (p21CIP) and several

Figure 4. Clustering analysis of EF values in each condition. A) Heatmap of highest and lowest EF values in each condition. Clustering was
done using Ward’s method in R. B–C) Networks corresponding to K3 (B) and K4 (C). Node colorings are according to 24h of 1 and 10 mM DOX
treatments, respectively. Edge colorings are as in Figure 2C.
doi:10.1371/journal.pcbi.1000889.g004
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GADD45 genes) (Figure 4B). Interestingly, although p53 appears in

both K3 and K4, its functions seem to be completely different in the

low and high dose treatments. In response to low-dose doxorubicin,

p53 is involved in the activation of cell cycle regulatory proteins, while

under high-dose, it activates other targets, such as TMSB4X.

Moreover, p53-target genes in cell cycle regulation in K3 are

inactivated in high-dose doxorubicin (Figure 5A–B), which we

confirmed by western blotting (Figure 5C), suggesting that p53 may

act as a transcriptional activator of these genes during cell cycle arrest

but as a repressor during apoptosis. This trend suggests not only that

p53 may engage different targets during cell cycle arrest and apoptosis,

but also shows dual behavior of p53 under these conditions. In

addition, this analysis shows that energy and amino acid metabolisms

may play an important role in doxorubicin-induced cell death. Here,

clustering analysis using NetWalk results facilitated comparison of

networks, rather than genes, between different conditions, leading to

the identification of differential activities of p53 under low and high-

dose doxorubicin treatment.

Discussion

NetWalk algorithm
Analyses of high content data within the context of biological

interactions allow for high confidence hypothesis generation about

mechanisms involved in the studied process. While some work has

been done on inferring novel causal interactions out of data [32–

34], the most popular method is integration of data with prior

knowledge on interactions to extract most relevant networks

highlighted by the data. Most of the methods for extracting

relevant networks rely on finding genes in the network that are

most central to connecting the genes of interest identified from the

data. The random walk process in NetWalk also scores most

central genes in the network. However, rather than working on a

small set of focus genes, NetWalk scores centralities of all genes in

the network based on the whole data distribution. This is achieved

by biasing the random walk transition probabilities between genes

to their corresponding data values, which allows for higher

visitation probabilities of nodes with high data values and lower

probabilities of nodes with low data values. Since visitation

probabilities of nodes in a random walk are also dependent on the

visitation probabilities of their network neighbors, nodes with

relatively moderate data values associated with those with higher

values have the potential of high visitation by the random walk.

Therefore, NetWalk scores nodes based on their data values, data

values of their neighbors and local network connectivity.

Unlike most of the existing methods for network extraction,

which typically give a set of networks as outputs [1,9], NetWalk

gives a distribution of EF values that allows for flexibility in

network construction using different EF cutoffs. In addition, EF

scores can be subjected to further statistical tests for comparative

Figure 5. p53-target cell cycle regulatory genes are specifically repressed during apoptosis. A–B) Network plot of interactions in K3 (see
Figure 4) related to cell cycle regulation. Nodes colored according to gene expression changes at 10 (A) or 1 mM (B) doxorubicin treatment. C)
Western blots of p53, p21 (CDKN1A gene product) protein levels over a time course after 1 and 10mM doxorubicin treatment. Actin levels shown as
control.
doi:10.1371/journal.pcbi.1000889.g005
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studies, allowing for network-based comparisons of multiple

conditions.

Another important feature of NetWalk is its computational

efficiency. We implemented a sparse matrix representation and

multiplication, which allows for NetWalk to be run on a standard

PC equipped with 1 gigabytes of memory. In our case (PC with

Intel Xeon Quad processor), NetWalk run of a single dataset in

our network (14,506 nodes and ,190,000 interactions) took about

2–3 seconds.

NetWalk analysis of the experimental data revealed a significant

activation of networks involved in energy metabolism, including

the glycolytic and mitochondrial electron transport chain compo-

nents. At least one member of the electron transport chain,

SCO2A, has been previously shown to be a p53 target [35],

suggesting that some, if not most, of the metabolic genes activated

in response to 10 uM doxorubicin may be p53 target genes. A

specific and extensive activation of the energy metabolism during

p53-mediated apoptosis has not been previously reported, and

therefore it is a novel finding facilitated by NetWalk analysis.

Network analysis of experimental data using NetWalk revealed

dual behavior of p53 under sublethal and lethal doses of DNA

damage. In response to sublethal doses of DNA damaging agents,

p53 activates a cell cycle arrest program centered around CDK

inhibitors p21 (CDKN1A) and GADD45, as well as several pro-

apoptotic genes, such as BAX and APAF1. However under lethal

doses, p53 represses the cell cycle arrest machinery and activates

an entirely different program. Use of NetWalk analysis allows

network based analysis of genomic data as well as high confidence

hypothesis generation and is a valuable tool in post-genomic

anlaysis.

Supporting Information

Figure S1 Correlation of node visitation frequencies with node

connectivities (left) and original data values (right) before

normalization for network topology (see Text). R2 values show

squared Spearman’s rank correlation coefficients.

Found at: doi:10.1371/journal.pcbi.1000889.s001 (0.08 MB PDF)

Figure S2 Same as in Figure S1, but after normalization for

network topological bias (see Text).

Found at: doi:10.1371/journal.pcbi.1000889.s002 (0.09 MB PDF)

Figure S3 Effect of data range on NetWalk output. Original

mRNA expression changes in response to 1uM doxorubicin (ratio)

were log2-transformed (di), and then transformed back by taking

exponential with different expansion factors f, s_i = f^(d_i ) where

s_i is the transformed value of gene i, di is the log2-transformed

original ratio value of gene i and f is the expansion factor.

Distributions of the transformed data with different expansion

factors are shown in A. Numbers above each distribution chart

shows the expansion factor. Expansion factor of 2 corresponds to

the original distribution. B) Correlation of visitation frequencies

corresponding to each transformed dataset with the original

visitation frequency values (i.e. f = 2). C) Correlation of visitation

frequency values for each expansion factor with the supplied

transformed data values. D–E) Highest scoring interactions

calculated using transformed datasets with expansion factor D)

1.25 and E) 5. Note that the two networks are highly similar ,
95% same node composition).

Found at: doi:10.1371/journal.pcbi.1000889.s003 (0.23 MB PDF)

Figure S4 Effect of data deletions on NetWalk output. Portions

of data were deleted and node visitation frequencies were

calculated by NetWalk. Shown are the correlations of each

deletion with the original node visitation frequency values (i.e. 0%

deletion).

Found at: doi:10.1371/journal.pcbi.1000889.s004 (0.03 MB PDF)

Figure S5 Effect of network deletions on NetWalk output. A

network corresponding to 690 nodes (highest scoring interactions

in 1uM doxorubicin dataset) was selected and nodes were deleted

at random. Correlation of resulting node visitation frequency

values with the original unperturbed network of 690 nodes is

shown (black). In addition, corresponding correlations with the

node degrees in each networks are also shown. Note that although

total number of interactions are relatively similar in each deletion,

the NetWalk output changes substantially due to changes in the

local network connectivities.

Found at: doi:10.1371/journal.pcbi.1000889.s005 (0.07 MB PDF)

Figure S6 Highest scoring networks corresponding to estrogen

receptor positive MCF7 cells relative to 58 other breast cancer cell

lines. ESR1 (estrogen receptor gene) is highlighted.

Found at: doi:10.1371/journal.pcbi.1000889.s006 (0.26 MB PDF)

Figure S7 Effect of edge perturbations on NetWalk output. A

random network corresponding to 755 nodes was selected out of

the whole network (3721 interactions). A) Edges were deleted at

random and correlation of the resultant node visitation frequencies

were compared to that of unperturbed network. B) To the network

in A where 50% of all edges were removed, we added random

interactions between random pairs of nodes and compared the

resultant NetWalk output with the initial NetWalk output at 50%

deleted network.

Found at: doi:10.1371/journal.pcbi.1000889.s007 (0.09 MB JPG)
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Qui k Guide To Equations And Assumptions
Mas action modeling
Th dynamics of the IGFR network inMDA-MB231 cellswere described using amass actionmodel of ODEs formulated as follows:
St p 1: The pathways comprising the IGFR network were reconstructed into a set of chemical reactions that described the

simp ified mechanisms of activation and inhibition of relevant proteins. For example, mitogen-activated protein kinase (MAPK)
phos horylation was assumed to be catalyzed byMAPK kinase [MAP/ extracellular signal-regulated kinase kinase (MEK)/MAPKK]
and ccurred through an enzymatic reaction:

MAPK þMEK�

kf
1

�! �
kr1

C

K2

�!MAPK� þMEK� ð1Þ

In eq ation 1, k1
f, k1

r, and K2 are the forward, reverse, and dissociation kinetic rate constants, respectively.
St p 2: The set of chemical reactions was transformed into a system of coupled ODEs by assuming that the dynamics of the

IGFR network obeyed the law of mass action. Specifically, the accumulation rate of the concentration of the ith signaling inter-
med te was expressed as the difference between its net rates of production (rp,i) and consumption (rc,i). Thus, the accumulation
rate f the concentration of MEK* was expressed as follows:

dMEK�

dt
¼

X
rp;MEK� �

X
rc;MEK� ¼ �kf1 ½MAPK	½MEK�	 þ kr1 þK2

� �
½C	 ð2Þ

In eq ation 2, [MAPK], [MEK*], and [C] denote the concentration of MAPK, MEK* and C, respectively.
Th list of chemical reactions that described the consensus activation and inhibition mechanisms of proteins involved in the

IGFR network and the corresponding system of ODEs are listed in Supplementary Material S1. To implement mass action mod-
eling it was necessary to infer the unknown model parameters, which are the kinetic rate constants and the initial concentra-
tion of the proteins. In this regard, we trained the mass action model against transient data measured by RPPA using PSO. We
selec ed PSO because of its superior ability to converge to more optimal solutions compared with other optimization algorithms
(see iscussion).

Part cle swarm optimization
PS is a stochastic algorithm that mimics the behavior of swarms of animals that search for food (36). Particles in the swarm

have position xij, a velocity vij, and a fitness fi, in which i and j represent the number of particles and the dimension of the space
solu on, respectively. Each particle remembers its best position xij

L locally and the best position xj
G globally reached by the entire

swar . During the iterative search for food, particles update their position and velocities to improve their fitness according to the
follo ing rules:

�ijðtþ 1Þ ¼ !�ijðtÞ þ c1r1 xLijðtÞ � xijðtÞ
h i

þ c2r2 xGj ðtÞ � xijðtÞ
h i

xijðtþ 1Þ ¼ xijðtÞ þ �ijðtÞ ð3Þ

In eq ations 3, ω is the inertia factor; r
1 and r2 are two random numbers uniformly distributed in the interval [0,1]; and c1 and c2

are t e coefficients of self-recognition and social component (see ref. 37 and Supplementary Material S2 for details on parameters
in eq ations 3).

In ur settings, the particle positions represented the unknown parameter values used in the mass action model to generate
com utationally the time courses of proteins that are measured by RPPA; the particle velocities denoted the extent to which the
para eter values were iteratively changed; and the particle fitness was defined as the distance between the time courses of pro-
teins xperimentally and computationallymeasured. Model parameters were randomly initialized and iteratively changed accord-
ing t equation 3 until the distance between the time courses of the measured and predicted proteins was minimal (i.e., optimal
fitne s). The distance between computed and measured time courses was evaluated using the SD-weighted square error:

SqE ¼
Xr
j¼1

Xs
i¼1

~ymij � ycij
h i2
 ymij

� � ð4Þ

In eq ation 4, γem
ij and σ(γ ij

m) represent the mean and SD, respectively, of the proteins measured by RPPA, whereas yij
c denotes

the p otein levels computed using the mass action model. Moreover, s represents the total number of data points comprising a
sing time course, and r is the total number of time courses. PSOwas implemented tominimize the SD-weighted square error and
train
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www.a
ention strategies through environmental, genetic, and
ing perturbations (32–34). This approach can predict
ect of available drugs on signaling network dynamics,
does not facilitate the search for drug combinations
ould optimally inhibit aberrant signaling. Another
y is to integrate mass action modeling with simulated
ling into a multiple-target optimal intervention (35).
se this approach is computationally expensive, alterna-
ocedures are needed to enable the rapid search for tar-
disease-related networks.

this study, we used reverse-phase protein array
) to measure the transient response of the MDA-
1 breast cancer cell line after stimulation by insu-
e growth factor (IGF-1). The reason for choosing
F receptor (IGFR) network is 2-fold: There is a large
t of experimental data and biological resources al-
us to build a consensus network and experimentally

; components of this network are being targeted in
l clinical trials for cancer therapy, thus having clini-
plicability. We developed a computational procedure
tegrated mass action modeling with particle swarm
ization (PSO) to train the model against normalized
courses of phosphorylated proteins in MDA-MB231
nd infer sets of unknown model parameters that
y fit the measured data. The trained mass action
was used to predict the effect of a targeted pertur-
and tested using experimental data. The trained and
mass action model was then used to identify the

influential molecules responsible for aberrant cell sig-
and determine the optimal combinations of inhibi-
nd small interfering RNAs for inhibiting abnormal
ing in MDA-MB231 cells. Immunoblotting and cell vi-
assay were then used to test and validate the effect
g combinations predicted by the mass action model.
tegrative approach is useful for generating experi-
l intervention strategies that could optimize drug
nations and discovering novel pharmacologic targets
ncer therapy.

rials and Methods

ulture and stimulation
human MDA-MB231 breast cancer cell line (K-Ras

-Raf mutants) was purchased from the America Type
e Collection (ATCC). The cell line was validated by
NA fingerprinting using the AmpFlSTR Identifiler kit
ed Biosystems). The STR profiles were compared with
ATCC fingerprints (http://www.atcc.org/) and to the

ine Integrated Molecular Authentication database ver-
.1.200808 (38). Cells were cultured in RPMI supplemen-
ith 5% fetal bovine serum. Cells were serum starved
ght and then subjected to treatment with 75 ng/mL
(Cell Signaling Technology). For RPPA, cells were
ated with 10 μmol/L U0126 (Promega) for 4 hours,
ed by IGF-1 stimulation for 5, 15, 30, 60, 90, or 120 min-
For immunoblotting, cells were pretreated with

L
(

ol/L U0126, 50 μmol/L LY294002 (Calbiochem-
Biochem Corp.) and 50 nmol/L rapamycin (Calbiochem-

Figu
MB23

acrjournals.org
Biochem Corp.), individually or combined, for 1 hour,
ed by IGF-1 stimulation for 5 or 60 minutes. For RPPA
mmunoblotting, controls were incubated for the
ponding times with DMSO.

odies
following antibodies were used for RPPA and immu-
tting: anti–phospho-MAPK (T202/Y204), anti–phos-
SK3 (S21/S9), anti–phospho-AKT (ser473), anti–
ho-TSC2 (T1462), anti–phospho-mammalian target
pamycin (mTOR; S2448), anti–phospho-P70S6K
), anti-MAPK (p44/42), anti-AKT, anti-TSC2 (28A7),
TOR, anti-P70S6K, and anti-actin were from Cell Sig-
Technology; and anti-GSK3 was from Santa Cruz

hnology, Inc.

noblotting
unoblotting was performed using standard procedures.

se-phase protein array
al diluted lysates were arrayed on nitrocellulose-coated
slides (Whatman) using the Aushon 2470 Arrayer
on Biosystems). Each slide was probed with a primary
dy plus a biotin-conjugated secondary antibody. The
was amplified using the DakoCytomation-catalyzed
(DAKO) and visualized using a 3,3′-diaminobenzidine

metric reaction. The slides were scanned, analyzed, and
ified using the customized Microvigene software (Vig-
ch, Inc.) to measure spot intensity. Each dilution curve
tted with the logistic model “Supercurve Fitting” (39).
ean values of the protein levels in the nonstimulated
ere used to normalize the time courses of the phos-
lated proteins measured in IGF-1–stimulated cells.

al violet cell viability assay
bility assay was performed using standard procedures.
ere treated for 3 days with the following: U0126 (concen-
of 0.1–100μmol/L), LY294002 (concentration of 0.1–100
L), or rapamycin (concentration of 0.1–100 nmol/L);
nation of U0126 (concentration of 0.5–50 μmol/L) and
002 [fixed at its quarter maximal effective concentration
value of 3.8 μmol/L] or rapamycin (fixed at its EC25 val-
.1 nmol/L); and combination of U0126 (fixed at its EC25

of 3.5 μmol/L) and rapamycin (concentration of 0.5 to 50
L). Corresponding controls were incubated with DMSO.
C25 of each inhibitor was estimated (Supplementary Ma-
S3) using Microsoft GraphPad Prism.

utational procedures
aterial S2.

lts

1 signaling detection by RPPA

re 1A shows the IGFR signaling network in the MDA-
1 cell line. Signal transduction is originated when IGF-1

Cancer Res; 70(17) September 1, 2010 OF3
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1. A, IGFR signaling network topology in the MDA-MB231 cell line. Nodes, proteins; edges, protein interactions; red arrows, protein activation;
een plungers, protein inactivation. B, protein profiles were measured on RPPA in triplicate. The mean protein profiles of non–IGF-1-stimulated
ere used as controls for normalization. Circles, mean of the normalized protein profiles; bars, SD. Normalized time courses were computationally
ted using the trained mass action model. Solid red lines, the mean time courses of the trajectories that equally fit the experimental data; dashed

lines, the fitting variability. C, histogram of model parameter regimens clustered according to the coefficient of variation (CV = SD/mean).
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exes with IGFR and triggers IGFR autophosphorylation
hosphorylated IGFR propagates the signal downstream
h the MAPK and phosphoinositide-3-kinase (PI3K)
ays, and leads to MAPK and protein kinase B (PKB/
phosphorylation (4, 5). The signals from the MAPK
3K cascades are routed to the mTOR pathway through
us sclerosis (TSC2) inactivation (1). Phosphorylated
activates protein S6 kinase of 70 kDa (p70S6K), which

vates the insulin receptor substrate (IRS-1) through
tive feedback loop (41). A detailed description of the
rk topology is provided in Supplementary Material
e used RPPA (42–46) to determine the changes in the
horylation of proteins in the IGFR network after IGF-1

ation. To account for the intrinsic variability of these
, all experiments were performed in three independent

the le
tially

r for 4 h.

acrjournals.org
s. Figure 1B shows the time courses of the measured
horylated proteins; the curves show the protein fold
e over the corresponding controls (Materials and
ds). After IGF-1 stimulation, the level of phospho-
eaked at 30 minutes (28-fold increase) and then settled
d a lower level at 120 minutes (18-fold increase).
trast, signal transduction across the MAPK cascade
ned essentially unchanged likely as a result of MAPK
tutive activation driven by K-Ras and B-Raf muta-
in MDA-MB231 cells. AKT activation triggered glyco-
ynthase kinase (GSK3) and TSC2 downregulation
h phosphorylation, and TSC2 inactivation facilitated
ho-mTOR and phospho-p70S6K upregulation. Thus,

vels of p-GSK3, p-TSC2, p-mTOR, and p-p70S6K ini-
increased and then adjusted to stationary levels.
2. The effect of MEK inhibition
network dynamics. A, protein

of IGF-1–stimulated MDA-MB231
edicted by the trained mass action
Solid red lines, the protein time
of the noninhibited cells; solid

ines, the protein profiles of
hibited cells. B, protein
orylation in MDA-MB231 cell
after stimulation with 75 ng/mL
etected in triplicate by RPPA.
ircles and red lines, the protein
urses of noninhibited cells; solid
and green lines, the protein
of cells inhibited with MEK
Cancer Res; 70(17) September 1, 2010 OF5
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lementing mass action modeling with PSO
ss action modeling and model reduction. To predict
namics of the IGFR network after IGF-1 stimulation in
MB231 cells, we developed a mass action ODE model.
rmulation was based on a set of 77 chemical reactions
escribed the consensus activation and inhibition
nisms of proteins involved in the IGFR network. The
ng mass action model was structured into 127 ODEs
13 unknown parameters. To decrease the complexity
model, we developed a reduced version of the original
. The 77 chemical reactions were reduced to a subset
reactions to describe the simplified interaction
nisms of the most relevant species in the IGFR net-
and the original model was reduced to 65 ODEs and
odel unknowns (Supplementary Material S4). We
and validated the ability of the reduced model to

ately describe IGFR dynamics by showing that the pro-
rofiles predicted by the reduced model matched those
ted by the original model for randomly selected sets of
eters (Supplementary Material S5). Therefore, through-
e article, we exclusively used the reduced model to pre-
e dynamics of IGFR signaling network.
el training. The measured time course data of pro-
in MDA-MB231 cells contain relevant information
the regulatory loops comprising the IGFR network.
ploit this information to optimally inhibit aberrant
ays, we used PSO to fit the model to the time courses
KT, p-MAPK, p-GSK3, p-mTOR, p-p70S6K, and p-TSC2
ns and infer the 161 unknown parameters. Studies
hed in the literature typically use only two or three
ut” molecules to fit ODE models to experimental data
fer unknown parameters (14, 15, 26). In our study, we
d our model using six readout proteins and 126 expe-
tal data points combined into a scalar fitness.
ause of the substantial degree of uncertainty in param-
timation, fitting mass action models to the qualitative
easured on RPPA required the identification of multi-
jectories that equally resembled the measured protein
s. Using the integrative mass action modeling PSO
ure, we identified 10 sets of model parameters that
y fit the measured data (Supplementary File S1). We
terized the parameter regimens by ranking the para-
s according to their coefficient of variation (CV) and
that 69% of them had a CV smaller than 1 (Fig. 1C).
lculated the means and SD of the identified trajectories
resent the entire set and the fitting variability. Figure 1B
the mean trajectories and the fitting variability

ied by the mass action model, which had been trained
PSO against normalized protein profiles measured on
after IGF-1 stimulation of MDA-MB231 cells. The
tion results indicated that the integrative procedure
ately fit the time courses of all measured proteins.
del testing. To determine the ability of the trained
to correctly generate responses to perturbations that
ot been explicitly included in the training data set, we
t to predict the dynamics of the IGFR network after
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ion of MEK. Figure 2A shows the transient IGFR sig-
response to targeted MEK inhibition, as predicted by

with 75
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ined mass action model. MEK inhibition led to signif-
downregulation of its immediate downstream effector,
K. Inhibition of p-MAPK attenuated the inhibition of
through direct interaction and through the p70S6K
ck loop. Consequently, p-AKT was upregulated. Acti-
of p-AKT increased the level of p-TSC2 but did not
the level of p-mTOR or GSK3. Signals from the MAPK
TOR cascades were integrated into the p70S6K path-
nd led to p-p70S6K downregulation.
computational results were experimentally tested
an independent set of 252 data points measured by
. Figure 2B shows the levels of p-AKT, p-MAPK,
3, p-mTOR, p-p70S6K, and p-TSC2 detected in tripli-
n IGF-1–stimulated MDA-MB231 cells in the absence
MEK inhibitor and after 4 hours of incubation with
EK inhibitor. The experimental data indicated that
inhibition increased p-AKT and p-TSC2 levels, de-
d p-MAPK and p-p70S6K levels, and slightly decreased
3 levels but had no significant effect on p-mTOR levels.
e the limited discrepancy between the computed and
red profiles of p-GSK3, the experimental results ade-
ly matched those predicted by the model. Therefore,
ined mass action model correctly predicted the effect
K inhibition on IGFR dynamics.

cting inhibition of targeted molecules
how to select drugs with the ability to inhibit the

3. The effect of single-molecule inhibition on IGFR signaling in
B231 cells. Differential levels of proteins in single molecule–
d versus noninhibited MDA-MB231 cells after 2 h of stimulation
ng/mL IGF-1 were predicted using the trained mass action model.

cal values were converted to log10. Blue, inhibition; white, no
n; red, activation.
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e sufficient to adequately inhibit aberrant signaling.
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redicted to activate the PI3K/AKT pathway, inhibi-
f intermediates comprising the PI3K/AKT pathway
redicted to activate the MAPK pathway. Because
pathways are often upregulated in many tumors
the combined inhibition of the MAPK and PI3K/
ascades emerged as a candidate strategy to inhibit
nt signaling in MDA-MB231 cells.
bined inhibition of targeted molecules. Predicting

sponse of IGFR networks to the inhibition of individual
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4. Combined inhibition of
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ted with 75 ng/mL IGF-1
in (A) or 60 min (B). C and
ity of the bands after
interfering RNAs can be mimicked by varying the initial
ntration of signaling proteins. The effect of the drug
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tion of targeted molecules. Despite being ranked in a
nt order, the top five targets were the same for the
sets. All targets that scored as influential were char-
zed by a positive median deviation, which indicated
tion of the reactions leading to inhibition of phos-
lated protein. Because p-IGFR, p-IRS-1, p-MEK, p-
, and p-AKT were scored as the most influential tar-
combined inhibition of the PI3K/AKT and MAPK
ays was predicted to optimally facilitate disruption
loops responsible for aberrant signaling in MDA-

1 cells.

imental validation of modeling predictions
effect of drug combinations on the IGFR network in
DA-MB231 cell line. We used immunoblotting to de-
e whether the combined inhibition of the MAPK and
AKT pathways would decrease the levels of p-AKT,
K, and p-p70S6K, and minimize changes in phosphory-
of other signaling proteins in the network. We also
the combination of MEK and mTOR inhibitors to
ine whether targeting pathways that differ from the
ted optimal combination would restore user-defined
ing changes in the MDA-MB231 cells.
res 4A and B show the levels of p-AKT, p-MAPK,
3, p-mTOR, p-p70S6K, and p-TSC2 detected in the absence
ibition, and after 1 hour of incubation with the MEK
r PI3K inhibitors in unstimulated cells and IGF-stimulated
he experimental data indicated that, in IGF-stimulated
nhibited with MEK and PI3K inhibitors (column 8),
els of all phosphorylated proteins were significantly de-
d compared with those of the corresponding proteins
ed in noninhibited, IGF-stimulated cells (column 5).
re 5A and B show the levels of p-AKT, p-MAPK,
3, p-mTOR, p-p70S6K, and p-TSC2 measured in the
ce of inhibition, and after 1 hour of incubation with
EK and/or mTOR inhibitors in unstimulated cells and
imulated cells. The experimental data indicated that
K, p-mTOR, and p-p70S6K levels in IGF-stimulated cells
ted with MEK and mTOR inhibitors (column 8) were
sed compared with those of the corresponding proteins
inhibited, IGF-1-stimulated cells (column 5). However,
AKT, p-GSK3, and p-TSC2 levels were increased.
plementary Table S2 shows the qualitative comparison
en the measured and predicted differential levels
sphorylated proteins in IGF-stimulated cells in the ab-
of inhibition, and after 1 hour of incubation with MEK
I3K inhibitors or MEK and mTOR inhibitors. Note that
perimental results agree with the modeling predictions
th drug combinations. Therefore, as predicted by the
action model, combined inhibition of the MAPK and
KT pathways optimally inhibited aberrant networks,
mbinations of MEK and mTOR inhibitors did not
se the levels of p-AKT, p-MAPK, and p-p70S6K, and
sed phosphorylation of nontargeted protein.
sensitivity to drug combinations. Optimal inhibition
ormal signaling networks must inhibit regulatory loops

dundant bypass to ultimately overcome the mecha-
of feedback compensation that ensures cancer cell

in cell
tial re

acrjournals.org
ty. To quantify the sensitivity of the MDA-MB231 cell
MEK and PI3K, or MEK and mTOR inhibition, we used
ability assays.
re 6A shows the effect of drug combinations on the
ty of MDA-MB231 cells, which was measured as the
lized absorbance of viable cells as a function of in-
ng MEK inhibition (U0126) in combination with PI3K
tor (LY294002) or mTOR inhibitor (rapamycin). The
mental results indicated that inhibiting cells with a
nation of LY294002 and increasing concentrations of
resulted in a dose-dependent decrease in cell viability.
trast, cells treated with a combination of rapamycin
creasing concentrations of U0126 showed no change

tage. Solid circles, mean of normalized absorbance; bars, SD.
6. Response curve of MDA-MB231 cells to dose concentration
inhibitors. A, cells were left nontreated as a control and
ed with LY294002 at its EC25 (3.8 μmol/L) or rapamycin at its EC25

ol/L) in combination with U0126 at a concentration of 0.5 to
l/L. B, cells were left nontreated as a control and incubated
th rapamycin at concentrations of 0.1 to 100 nmol/L or with a
ation of U0126 at its EC25 (3.5 μmol/L) and rapamycin at a
tration of 0.5 to 50 μmol/L. Absorbance was normalized with
t to the value detected for the controls and was expressed as a
proliferation up to 1 μmol/L of U0126 followed by par-
scue of cells with rapamycin. Combined MEK-PI3K
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tion monotonically decreased cell viability, likely as a
of the optimal inhibition of the signaling pathways that
inactivation of phosphorylated proteins (Fig. 4). In con-
combined MEK-mTOR inhibition increased cell viabil-
low concentrations of the U0126 inhibitor, likely as a
of the nonoptimal inhibition of the signaling network
d to activation of p-AKT (Fig. 5). At high concentra-
of the U0126 inhibitor, cell viability was significantly
sed for both drug combinations, likely as a result of
inhibitor toxicity (Supplementary Material S3).
test whether the combination of MEK and mTOR
tors rescued cell proliferation by activation of p-AKT,
rformed cell viability assays with rapamycin alone or
apamycin in combination with U2016. The experi-
l results shown in Fig. 6B indicated that addition of
inhibitor to cells treated with rapamycin increased

ability from 40% to 73% and rescued cells from cell
. Therefore, the experimental results suggested that
al inhibition of aberrant signaling through combined
tion of the MAPK and PI3K pathways was correlated
ecreased cell viability. In contrast, nonoptimal com-
targeted inhibition led to inadequate inhibition of
naling networks and increased cell viability.

ssion

grating mass action modeling with optimization
es is a quantitative approach to train ODE models us-
perimental data and identify optimal drug combina-
that can inhibit signaling networks. PSO converged
re optimal solutions than did other optimization algo-
, including simulated annealing and genetic algorithms.
mentary Table S3 summarizes the performance of the
algorithms in training the reduced mass action model
t time courses of proteins (Supplementary File S4). Each
tion was repeated three times with different random
of the reduced model unknown parameters.
most simple and intuitive strategy to inhibit aberrant

rks consists of inhibiting the input sources that trigger

al inhibition of IGFR could
Rece

OnlineF

'ayan A, Jenkins SL, Neves S, et al. Formation of regulatory
tterns during signal propagation in a Mammalian cellular network.
ience 2005;309:1078–83.

9. Alo
Re

10. Bh
mo

11. Ju
ing
loo

12. Ald
ch
11

13. Bh
of
Sc

14. Bir
Kh
ne
3:1

r Res; 70(17) September 1, 2010
e user-defined pathways in MDA-231 cells. However,
tutive p-MAPK activation driven by K-Ras and B-Raf
ions impairs this approach. The experimental results
in Figs. 4 and 5, and the computational results shown
. 3 also suggest that individual inhibition of targeted
ules frequently does not optimally inhibit cell signaling.
e effective inhibition of aberrant signaling is accom-
d through multiple combined inhibitions of targeted
ules. The experimental results shown in Figs. 4 to 6 in-
that combined inhibition of the MAPK and PI3K/AKT
ays optimally inhibited the signaling networks and
sed cell viability. In contrast, combined inhibition of
APK and mTOR cascades led to significant activation
KT and increased cell viability. Although several other
s and pathways may potentially regulate the viability of
DA-231 cells, the experimental results indicated that
aneous inhibition of the MAPK and PI3K/AKT path-
as sufficient to significantly reduce cell proliferation.
onclusion, we propose a computational procedure that
used to rapidly generate experimentally testable inter-
n strategies that may lead to an optimal use of avail-
rugs and the discovery of novel signaling targets. The
dure is currently being used to identify and validate
ombinations that can inhibit aberrant networks in a
of human cancer cell lines.

osure of Potential Conflicts of Interest

otential conflicts of interest were disclosed.

Support

devaia was supported in part by a training fellowship from the
coinformatics Training Program of the Keck Center of the Gulf Coast
ia (NIH grant 5 T90 DK070109-04). This study was supported by the
Center for Molecular Markers, NIH P01CA099031, and The Komen
tion (G.B. Mills), and DOD BC044268 and NIH R01CA125109 (P.T. Ram).
costs of publication of this article were defrayed in part by the payment
charges. This article must therefore be hereby marked advertisement in
nce with 18 U.S.C. Section 1734 solely to indicate this fact.
ived 02/23/2010; revised 07/02/2010; accepted 07/05/2010; published
irst 07/19/2010.
transduction. Thus, individu
rences
nning BD, Cantley LC. AKT/PKB signaling: navigating down-
eam. Cell 2007;129:1261–74.
llschleger S, Loewith R, Hall MN. TOR signaling in growth and
tabolism. Cell 2006;124:471–84.
ger R, Krebs EG. The MAPK signaling cascade. FASEB J 1995;9:
–35.
hlessinger J. Cell signaling by receptor tyrosine kinases. Cell
00;103:211–25.
rich A, Schlessinger J. Signal transduction by receptors with tyro-
e kinase activity. Cell 1990;61:203–12.
alla US, Iyengar R. Emergent properties of networks of biological
naling pathways. Science 1999;283:381–7.
ng G, Bhalla US, Iyengar R. Complexity in biological signaling
tems. Science 1999;284:92–6.
n U. Network motifs: theory and experimental approaches. Nat
v Genet 2007;8:450–61.
alla US. Understanding complex signaling networks through
dels and metaphors. Prog Biophys Mol Biol 2003;81:45–65.
stman QA, Serber Z, Ferrell JE, Jr., El-Samad H, Shokat KM. Tun-
the activation threshold of a kinase network by nested feedback
ps. Science 2009;324:509–12.
ridge BB, Burke JM, Lauffenburger DA, Sorger PK. Physico-
emical modelling of cell signalling pathways. Nat Cell Biol 2006;8:
95–203.
alla US, Ram PT, Iyengar R. MAP kinase phosphatase as a locus
flexibility in a mitogen-activated protein kinase signaling network.
ience 2002;297:1018–23.
twistle MR, Hatakeyama M, Yumoto N, Ogunnaike BA, Hoek JB,

olodenko BN. Ligand-dependent responses of the ErbB signaling
twork: experimental and modeling analyses. Mol Syst Biol 2007;
44.

Cancer Research



15. Mu
de
bif
MC

16. Tys
Na

17. Ty
reg

18. Alo
ch

19. Ba
Na

20. Bo
mo
tio

21. Ed
ich
da

22. Elo
tio

23. Fu
pa

24. Ga
sw

25. Ba
miz
ma

26. Ch
Erb
ag

27. He
Be
thr

28. Mo
ica
Ge

29. Ro
for
wa

30. Sw
cat
sig
100

31. Wa
tio
Mo

32. Ara
cha
Re

33. Ra
pa

34. Sc
mo
su
37

35. Ya
op
Bio

36. Ke
the
Au

37. Ab
tive
Stu

38. Ro
Ce
mo
20

39. md
Ca
ma

40. Va
ba

41. Ea
eff

42. Sh
mi
ne
mi

43. Tib
of
leu
20

44. Mi
kin
mi
Re

45. Ste
ge
mu

46. Go
rec
sis

47. He
PI3

Integrative Identification of Optimal Drug Combinations

www.a
ller M, Obeyesekere M, Mills GB, Ram PT. Network topology
termines dynamics of the mammalian MAPK1,2 signaling network:
an motif regulation of C-Raf and B-Raf isoforms by FGFR and
1R. FASEB J 2008;22:1393–403.
on JJ, Chen K, Novak B. Network dynamics and cell physiology.
t Rev Mol Cell Biol 2001;2:908–16.
son JJ, Csikasz-Nagy A, Novak B. The dynamics of cell cycle
ulation. Bioessays 2002;24:1095–109.
n U, Surette MG, Barkai N, Leibler S. Robustness in bacterial
emotaxis. Nature 1999;397:168–71.
rkai N, Leibler S. Robustness in simple biochemical networks.
ture 1997;387:913–7.
man BM, Fields JZ, Bonham-Carter O, Runquist OA. Computer
deling implicates stem cell overproduction in colon cancer initia-
n. Cancer Res 2001;61:8408–11.
wards JS, Ibarra RU, Palsson BO. In silico predictions of Escher-
ia coli metabolic capabilities are consistent with experimental
ta. Nat Biotechnol 2001;19:125–30.
witz MB, Leibler S. A synthetic oscillatory network of transcrip-
nal regulators. Nature 2000;403:335–8.
ssenegger M, Bailey JE, Varner J. A mathematical model of cas-
se function in apoptosis. Nat Biotechnol 2000;18:768–74.
rdner TS, Cantor CR, Collins JJ. Construction of a genetic toggle
itch in Escherichia coli. Nature 2000;403:339–42.
lsa-Canto E, Peifer M, Banga JR, Timmer J, Fleck C. Hybrid opti-
ation method with general switching strategy for parameter esti-
tion. BMC Syst Biol 2008;2:26.
en WW, Schoeberl B, Jasper PJ, et al. Input-output behavior of
B signaling pathways as revealed by a mass action model trained
ainst dynamic data. Mol Syst Biol 2009;5:239.
gger R, Kantz H, Schmuser F, Diestelhorst M, Kapsch RP,
ige H. Dynamical properties of a ferroelectric capacitor observed
ough nonlinear time series analysis. Chaos 1998;8:727–36.
les CG, Mendes P, Banga JR. Parameter estimation in biochem-
l pathways: a comparison of global optimization methods.
nome Res 2003;13:2467–74.
driguez-Fernandez M, Mendes P, Banga JR. A hybrid approach
efficient and robust parameter estimation in biochemical path-
ys. Biosystems 2006;83:248–65.
ameye I, Muller TG, Timmer J, Sandra O, Klingmuller U. Identifi-
ion of nucleocytoplasmic cycling as a remote sensor in cellular
naling by databased modeling. Proc Natl Acad Sci U S A 2003;
:1028–33.
ng CC, Cirit M, Haugh JM. PI3K-dependent cross-talk interac-
ns converge with Ras as quantifiable inputs integrated by Erk.
l Syst Biol 2009;5:246.

ujo RP, Liotta LA, Petricoin EF. Proteins, drug targets and the me-
nisms they control: the simple truth about complex networks. Nat
v Drug Discov 2007;6:871–80.

20
48. Ne

Ne

acrjournals.org
jasethupathy P, Vayttaden SJ, Bhalla US. Systems modeling: a
thway to drug discovery. Curr Opin Chem Biol 2005;9:400–6.
hoeberl B, Eichler-Jonsson C, Gilles ED, Muller G. Computational
deling of the dynamics of the MAP kinase cascade activated by
rface and internalized EGF receptors. Nat Biotechnol 2002;20:
0–5.
ng K, Bai H, Ouyang Q, Lai L, Tang C. Finding multiple target
timal intervention in disease-related molecular network. Mol Syst
l 2008;4:228.
nnedy J, Eberhart R. Particle swarm optimization. Proceedings of
fourth IEEE International Conference on Neural Networks. Perth,

stralia: IEEE Service Center; 1995, p. 1942–8.
raham A, Guo H, Liu H. Swarm intelligence: foundations, perspec-
s and applications. In: Nedjah N, de Macedo Mourelle L, editors.
dies in Computational Intelligence. Springer; 2006, p. 2–25.
mano P, Manniello A, Aresu O, Armento M, Cesaro M, Parodi B.
ll Line Data Base: structure and recent improvements towards
lecular authentication of human cell lines. Nucleic Acids Res
09;37:D925–32.
anderson.org. Houston: The University of Texas MD Anderson
ncer Center. [cited 2010 Feb 23]. Available from: http://bioinfor-
tics.mdanderson.org/OOMPA/.
strik I, D'Eustachio P, Schmidt E, et al. Reactome: a knowledge
se of biologic pathways and processes. Genome Biol 2007;8:R39.
ston JB, Kurmasheva RT, Houghton PJ. IRS-1: auditing the
ectiveness of mTOR inhibitors. Cancer Cell 2006;9:153–5.
eehan KM, Calvert VS, Kay EW, et al. Use of reverse phase protein
croarrays and reference standard development for molecular
twork analysis of metastatic ovarian carcinoma. Mol Cell Proteo-
cs 2005;4:346–55.
es R, Qiu Y, Lu Y, et al. Reverse phase protein array: validation
a novel proteomic technology and utility for analysis of primary
kemia specimens and hematopoietic stem cells. Mol Cancer Ther
06;5:2512–21.
rzoeva OK, Das D, Heiser LM, et al. Basal subtype and MAPK/ERK
ase (MEK)-phosphoinositide 3-kinase feedback signaling deter-
ne susceptibility of breast cancer cells to MEK inhibition. Cancer
s 2009;69:565–72.
mke-Hale K, Gonzalez-Angulo AM, Lluch A, et al. An integrative
nomic and proteomic analysis of PIK3CA, PTEN, and AKT
tations in breast cancer. Cancer Res 2008;68:6084–91.
nzalez-Angulo AM, Stemke-Hale K, Palla SL, et al. Androgen
eptor levels and association with PIK3CA mutations and progno-
in breast cancer. Clin Cancer Res 2009;15:2472–8.
nnessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the
K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov
05;4:988–1004.

lson DL, Cox MM, editors. Lehninger principles of biochemistry.
w York: Worth Publishers; 2000.

Cancer Res; 70(17) September 1, 2010 OF11


	BMC paper.pdf
	Abstract
	Background
	Results
	Conclusion

	Background
	The Signaling Petri Net Simulator

	Implementation
	The Signaling Network Model
	Signaling Network Markings
	Markings
	Marking Series
	Marking Groups
	The Marking Manager

	Signaling Paths

	Results
	Network Visualization
	Network Signal Flow Simulation
	Signaling Path Analysis
	Experimental Data Analysis
	Future Directions

	Conclusion
	Availability and requirements
	Authors' contributions
	Acknowledgements
	References




